Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Engineering a better solar cell: UW research pinpoints defects in popular perovskites

UW researchers used microscopy to identify inefficient regions in perovskite materials used in solar cells, as evidenced by dark areas in C.
CREDIT: University of Washington
UW researchers used microscopy to identify inefficient regions in perovskite materials used in solar cells, as evidenced by dark areas in C.

CREDIT: University of Washington

Abstract:
One of the fastest-growing areas of solar energy research is with materials called perovskites. These promising light harvesters could revolutionize the solar and electronics industries because they show potential to convert sunlight into electricity more efficiently and less expensively than today's silicon-based semiconductors.

Engineering a better solar cell: UW research pinpoints defects in popular perovskites

Seattle, WA | Posted on May 1st, 2015

These superefficient crystal structures have taken the scientific community by storm in the past few years because they can be processed very inexpensively and can be used in applications ranging from solar cells to light-emitting diodes (LEDs) found in phones and computer monitors.

A new study published online April 30 in the journal Science by University of Washington and University of Oxford researchers demonstrates that perovskite materials, generally believed to be uniform in composition, actually contain flaws that can be engineered to improve solar devices even further.

"Perovskites are the fastest-growing class of photovoltaic material over the past four years," said lead author Dane deQuilettes, a UW doctoral student working with David Ginger, professor of chemistry and associate director of the UW's Clean Energy Institute.

"In that short amount of time, the ability of these materials to convert sunlight directly into electricity is approaching that of today's silicon-based solar cells, rivaling technology that took 50 years to develop," deQuilettes said. "But we also suspect there is room for improvement."

The research team used high-powered imaging techniques to find defects in the perovskite films that limit the movement of charges and, therefore, limit the efficiency of the devices. Perovskite solar cells have so far have achieved efficiencies of roughly 20 percent, compared to about 25 percent for silicon-based solar cells.

In a collaboration made possible by the Clean Energy Institute, the team used a technique called confocal optical microscopy, which is more often used in biology, and applied it to semiconductor technology. They used fluorescent images and correlated them with electron microscopy images to find "dark" or poorly performing regions of the perovskite material at intersections of the crystals. In addition, they discovered that they could "turn on" some of the dark areas by using a simple chemical treatment.

The images offered several surprises but also will lead to accelerated improvements in the materials' uniformity, stability and efficiency, according to corresponding author Ginger, the Alvin L. and Verla R. Kwiram Endowed Professor of Chemistry and Washington Research Foundation Distinguished Scholar.

"Surprisingly, this result shows that even what are being called good, or highly-efficient perovskite films today still are 'bad' compared to what they could be. This provides a clear target for future researchers seeking to improve and grow the materials," Ginger said.

The imaging technique developed by the UW team also offers an easy way to identify previously undiscovered flaws in perovskite materials and to pinpoint areas where their composition can be chemically altered to boost performance, Ginger said.

deQuilettes, who spearheaded the project as a Clean Energy Institute graduate fellow, estimates there are more than a thousand laboratories around the world currently researching the semiconducting properties of perovskite materials. Yet there is more work to be done to understand how to consistently make a material that is stable, has uniform brightness and can stand up to moisture without degrading. The UW research offers new ways for people to think strategically about how to improve the materials and how to extend their applications to high performance light-emitting devices such as LEDs and lasers.

"There are so many of us focusing on perovskites, so hopefully this technique will offer some new direction and steer us toward the places we can look to optimize their energy-capturing and emitting potential," deQuilettes said.

###

Co-authors of the study are Sarah M. Vorpahl, Hirokazu Nagaoka and Mark E. Ziffer of the UW and Samuel D. Stranks, Giles E. Eperon and Henry J. Snaith at Oxford.

Funding for the research was provided by the state of Washington through the UW Clean Energy Institute.

####

For more information, please click here

Contacts:
Jennifer Langston

206-543-2580

For more information
contact UW researchers

Dane deQuilettes


David Ginger


Oxford researchers
Samuel Stranks


Henry Snaith

Copyright © University of Washington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Discoveries

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project