Home > Press > Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching
For the first time a light beam switches a single molecule to closed state (red atoms). At the ends of the diarylethene molecule gold electrodes are attached. This way, the molecule functions as an electrical switch. CREDIT: HZDR/Pfefferkorn |
Abstract:
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Konstanz are working on storing and processing information on the level of single molecules to create the smallest possible components that will combine autonomously to form a circuit. As recently reported in the academic journal Advanced Science, the researchers can switch on the current flow through a single molecule for the first time with the help of light.
Dr. Artur Erbe, physicist at the HZDR, is convinced that in the future molecular electronics will open the door for novel and increasingly smaller - while also more energy efficient - components or sensors: "Single molecules are currently the smallest imaginable components capable of being integrated into a processor." Scientists have yet to succeed in tailoring a molecule so that it can conduct an electrical current and that this current can be selectively turned on and off like an electrical switch.
This requires a molecule in which an otherwise strong bond between individual atoms dissolves in one location - and forms again precisely when energy is pumped into the structure. Dr. Jannic Wolf, chemist at the University of Konstanz, discovered through complex experiments that a particular diarylethene compound is an eligible candidate. The advantages of this molecule, approximately three nanometres in size, are that it rotates very little when a point in its structure opens and it possesses two nanowires that can be used as contacts. The diarylethene is an insulator when open and becomes a conductor when closed. It thus exhibits a different physical behaviour, a behaviour that the scientists from Konstanz and Dresden were able to demonstrate with certainty in numerous reproducible measurements for the first time in a single molecule.
A computer from a test-tube
A special feature of these molecular electronics is that they take place in a fluid within a test-tube, where the molecules are contacted within the solution. In order to ascertain what effects the solution conditions have on the switching process, it was therefore necessary to systematically test various solvents. The diarylethene needs to be attached at the end of the nanowires to electrodes so that the current can flow. "We developed a nanotechnology at the HZDR that relies on extremely thin tips made of very few gold atoms. We stretch the switchable diarylethene compound between them," explains Dr. Erbe.
When a beam of light then hits the molecule, it switches from its open to its closed state, resulting in a flowing current. "For the first time ever we could switch on a single contacted molecule and prove that this precise molecule becomes a conductor on which we have used the light beam," says Dr. Erbe, pleased with the results. "We have also characterized the molecular switching mechanism in extremely high detail, which is why I believe that we have succeeded in making an important step toward a genuine molecular electronic component."
Switching off, however, does not yet work with the contacted diarylethene, but the physicist is confident: "Our colleagues from the HZDR theory group are computing how precisely the molecule must rotate so that the current is interrupted. Together with the chemists from Konstanz, we will be able to accordingly implement the design and synthesis for the molecule." However, a great deal of patience is required because it's a matter of basic research. The diarylethene molecule contact using electron-beam lithography and the subsequent measurements alone lasted three long years. Approximately ten years ago, a working group at the University of Groningen in the Netherlands had already managed to construct a switch that could interrupt the current. The off-switch also worked only in one direction, but what couldn't be proven at the time with certainty was that the change in conductivity was bound to a single molecule.
Nano-electronics in Dresden
One area of research focus in Dresden is what is known as self-organization. "DNA molecules are, for instance, able to arrange themselves into structures without any outside assistance. If we succeed in constructing logical switches from self-organizing molecules, then computers of the future will come from test-tubes," Dr. Erbe prophesizes. The enormous advantages of this new technology are obvious: billion-euro manufacturing plants that are necessary for manufacturing today's microelectronics could be a thing of the past. The advantages lie not only in production but also in operating the new molecular components, as they both will require very little energy.
With the Helmholtz Research School NANONET, the conditions for investigating and developing the molecular electronics of tomorrow are quite positive in Dresden. In addition to the HZDR, the Technische Universität Dresden, Leibniz-Institute of Polymer Research Dresden (IPF), the Fraunhofer Institute for Ceramic Technology and Systems (IKTS) and the NaMLab gGmbH all participate in running the structured doctoral program.
####
About Helmholtz-Zentrum Dresden-Rossendorf
The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) conducts research in the sectors energy, health, and matter. It has been a member of the Helmholtz Association, Germany's largest research organization, since 2011. Several large-scale research facilities provide unique research opportunities. These facilities are also accessible to external users. The HZDR employs about 1,000 people - approximately 500 of whom are scientists, including 150 doctoral candidates.
For more information, please click here
Contacts:
Christine Bohnet
49-351-260-2450
Copyright © Helmholtz-Zentrum Dresden-Rossendorf
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||