Home > Press > Newly-Developed Nanocatalysts Increase Performance of Fuel Cells
Abstract:
Iranian researchers used nanotechnology and produced a type of nanocatalyst which modifies the performance of fuel cells.
Natural materials with large and rich sources in the country have been used in the production of the catalyst. Therefore, the production of the catalyst is cost-effective. The application of fuel cells provides the opportunity to produce energy without creating any environmental pollution.
In this research, efforts have been made to produce appropriate catalysts to be used in methanol fuel cells by using carbon paste cheap electrodes and their modification with desirable intermediates. Electrical energy is produced in methanol fuel cells through the chemical oxidization of methanol.
The efficiency of the fuel cell increases when methanol oxidizes easily. However and due to some problems such as the slow oxidation of methanol and the pollution on the surface of normal electrodes, it is very important to produce new catalysts to overcome the limitations. Therefore, carbon paste electrode modified with clinopetilolite natural zeolite nanoparticles ion exchanged with nickel (II) cation were used in this research as the catalyst to oxidize methanol.
Reducing the potential required for the oxidation of methanol on the electrode surface and creating larger current are equal to the better efficiency of the fuel cell, which are very important from economical point of view. The catalyst produced in this research decreases the voltage required for methanol oxidation up to 500 mV in comparison with platinum electrode, and it significantly increases the produced current. In other words, methanol oxidizes very easily in the presence of this catalyst.
Results of the research have been published in ELECTROCHIMICA ACTA, vol. 147, issue 1, 2014, pp. 572-581.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Automotive/Transportation
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Fuel Cells
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||