Home > Press > Teijin to Participate in Nano Tech 2015
Abstract:
Teijin Limited announced today that it will exhibit a wide range of nanotech materials and products incorporating advanced Teijin technologies during the International Nanotechnology Exhibition and Conference (nano tech 2015), the world's largest nanotechnology show, at the Tokyo Big Sight in Tokyo, Japan from January 28 to 30.
Teijin's booth (Stand 4E-16) will present nanotech materials and products for sustainable transportation, information and electronics, safety and protection, environment and energy, and healthcare, including:
Nanofront: An ultra-fine polyester fiber with an unprecedented diameter of just 700 nanometers featuring superior fitting, slip resistance, heat and light shielding, and filtering properties. It is used for diverse applications, including clothing and industrial applications such as filters and heat-shielding sheets.
Carbon nanotube yarn: 100%-carbon nanotube continuous yarn offering high electrical and thermal conductivity similar to metal, and also the flexibility, robust handling and strength of a textile fiber. Envisioned uses include space, aerospace, healthcare, vehicles and smart garments. A high-end audio cable and a smart fabric will be exhibited at the show.
NanoGram Si paste: Printed electronics material containing 20nm-diameter silicon nanoparticles for photovoltaic cells capable of high conversion efficiency.
Nanotech-based decorative films: Structurally colored multilayer polyester films that utilize the interference of each multilayer's optical path difference rather than dyes or pigments. Decorative films for automotive and other applications will be exhibited.
Polylactic acid (PLA) electrospun sheet (under development): PLA nonwoven sheet that is expected to be used for scaffolds in regenerative medicine.
High-performance membranes (under development): High-precision porous thin polyethylene membrane and multi-layer membrane composites for micro filters, moisture permeable waterproof sheet and LIELSORT high-capacity battery separators, etc.
Carbon nanofiber (under development): Highly conductive carbon nanofiber with a diameter of 200-300 nanometers and an elliptical cross section consisting of well-developed graphite layers ordered in a single direction. Envisioned applications include batteries, thermal conducting materials and plastic-reinforcing materials, among others.
####
About Teijin Limited
Teijin (TSE: 3401) is a technology-driven global group offering advanced solutions in the areas of sustainable transportation, information and electronics, safety and protection, environment and energy, and healthcare. Its main fields of operation are high-performance fibers such as aramid, carbon fibers & composites, healthcare, films, resin & plastic processing, polyester fibers, products converting and IT. The group has some 150 companies and around 16,000 employees spread out over 20 countries worldwide. It posted consolidated sales of JPY784.4 billion (USD 7.7 billion) and total assets of JPY 768.4 billion (USD 7.5 billion) in the fiscal year ending March 31, 2014.
For more information, please click here
Contacts:
Corporate Communications
Teijin Limited
+81 3 3506 4055
Copyright © Teijin Limited
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Automotive/Transportation
Leading the charge to better batteries February 28th, 2025
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Textiles/Clothing
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022
Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020
Aerospace/Space
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Industrial
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |