Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > ‘Small’ transformation yields big changes

In this file photo, Swastik Kar (right), and Yung Joon Jung use a Raman Spectrometer to characterize the assembly of a carbon nanotube. Photo by Mary Knox Merrill
In this file photo, Swastik Kar (right), and Yung Joon Jung use a Raman Spectrometer to characterize the assembly of a carbon nanotube.

Photo by Mary Knox Merrill

Abstract:
An inter­dis­ci­pli­nary team of researchers led by North­eastern Uni­ver­sity has devel­oped a novel method for con­trol­lably con­structing pre­cise inter-​​nanotube junc­tions and a variety of nanocarbon struc­tures in carbon nan­otube arrays. The method, the researchers say, is facile and easily scal­able, which will allow them to tailor the phys­ical prop­er­ties of nan­otube net­works for use in appli­ca­tions ranging from elec­tronic devices to CNT-​​reinforced com­posite mate­rials found in every­thing from cars to sports equipment.

‘Small’ transformation yields big changes

Boston, MA | Posted on September 16th, 2014

Their find­ings were pub­lished on Monday in the journal Nature Com­mu­ni­ca­tions. The paper—titled "Sculpting carbon bonds for allotropic trans­for­ma­tion through solid-​​state re-​​engineering of -sp2 carbon"—was co-​​authored by post­docs, stu­dents, and leading CNT researchers from North­eastern Uni­ver­sity, the Mass­a­chu­setts Insti­tute of Tech­nology, and the Korea Advanced Insti­tute of Sci­ence and Tech­nology whose exper­tise runs from physics and mechan­ical engi­neering to mate­rials sci­ence and elec­trical engineering.

The chief archi­tect of the team's novel method for re-​​engineering carbon bonds was Hyun­y­oung Jung, the paper's lead author and a post­doc­toral fellow in the lab of co-​​author Yung Joon Jung, a nano-​​manufacturing expert and an asso­ciate pro­fessor of mechan­ical and indus­trial engi­neering.

Hyun­y­oung found that applying con­trolled, alter­nating voltage pulses across single-​​walled carbon nan­otube net­works trans­formed them into larger-​​diameter single-​​walled CNTs; multi-​​walled CNTs of dif­ferent mor­pholo­gies; or multi-​​layered graphene nanorribbons.

The new recon­struc­tion method—unlike pre­vious attempts to meld nanotubes—eschews harsh chem­i­cals and extremely high tem­per­a­tures, making the solid-​​state engi­neering tech­nique emi­nently con­ducive to scal­a­bility. What's more, the new method pro­duces mol­e­c­ular junc­tions whose elec­trical and thermal con­duc­tiv­i­ties are far supe­rior com­pared to the junction-​​free assem­bled CNT network.

Their robust phys­ical prop­er­ties, the researchers say, make these inter-​​nanotube junc­tions per­fect for rein­forcing com­posite mate­rials that require mechan­ical tough­ness, including tennis rac­quets, golf clubs, cars, and even air­planes, where carbon fibers are cur­rently being used. "Using these mate­rials for mechan­ical com­po­nents could lighten cars or other mechan­ical struc­tures without sac­ri­ficing strength," Yung Joon explained.

The researchers described the utility of their ground­breaking work through the use of a metaphor in which carbon nan­otubes were wall-​​building bricks. Fashion a wall by stacking single bricks atop each other, they said, and watch the wall come tum­bling down. But build a wall by placing cement between the bricks and marvel at the indomitable strength of the larger, single unit.

"We have filled in the gaps with cement," said co-​​author Swastik Kar, an assis­tant pro­fessor of physics at North­eastern, in keeping with the metaphor. "We started with single-​​walled carbon nan­otubes," he added, "and then used this pio­neering method to bring them together."

In addi­tion to Kar, Hyun­y­oung, and Yung Joon, the paper's North­eastern co-​​authors com­prised Younglae Kim, an ex-​​graduate stu­dent, and Sanghyung Hong, a doc­toral can­di­date in Yung Joon Jung's lab. "Pro­fessor Kar's and our groups have had a very strong col­lab­o­ra­tion for many years," Yung Joon said. "This research brings together experts from a number of dis­ci­plines to not only pro­duce a high-​​impact paper but also to gen­erate intel­lec­tual property."

The team's research was sup­ported by the National Sci­ence Foun­da­tion and the Min­istry of Industry in the Republic of Korea.

####

For more information, please click here

Contacts:
John O'Neill

617-373-5460

Copyright © Northeastern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Automotive/Transportation

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Sports

Threads that sense how and when you move? New technology makes it possible: Engineers created thread sensors that can be attached to skin to measure movement in real time, with potential implications for tracking health and performance January 29th, 2021

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project