Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > RMIT delivers $30m boost to micro and nano-tech

RMIT University's $AUD30 million MicroNano Research Facility.
RMIT University's $AUD30 million MicroNano Research Facility.

Abstract:
A new $AUD30 million research facility at RMIT University in Melbourne, Australia, will drive cutting-edge advances in micro- and nano-technologies.

RMIT delivers $30m boost to micro and nano-tech

Melbourne, Australia | Posted on August 26th, 2014

The MicroNano Research Facility (MNRF) will bring to Australia the world's first rapid 3D nanoscale printer and will support projects that span across the traditional disciplines of physics, chemistry, engineering, biology and medicine.

The City campus facility will be launched by Vice-Chancellor and President, Professor Margaret Gardner AO, on Wednesday, 27 August.

Professor Gardner said the opening of the state-of-the-art laboratories and clean rooms was the start of an exciting new chapter in cross-disciplinary nano research.

"At the heart of the MicroNano Research Facility's mission is bringing together disparate disciplines to enable internationally-leading research activity," she said.

"RMIT has long been a pioneer in this field, opening Australia's first academic clean rooms at the Microelectronics and Materials Technology Centre in 1983.

"Over three decades later, this investment in the world-class MNRF will enable RMIT's leading researchers to continue to break new ground and transform the future."

Among the equipment available to researchers in the 1200 square metre facility will be the world's first rapid 3D nanoscale printer, capable of producing thousands of structures - each a fraction of the width of a human hair - in seconds.

Designed by architects SKM Jacobs, the MNRF also offers researchers access to more than 50 cutting-edge tools, including focused ion beam lithography with helium, neon, and gallium ion beams to enable imaging and machining objects to 0.5 nm resolution - about 5 to 10 atoms.

Director of the MNRF, Professor James Friend, said 10 research teams would work at the new facility on a broad range of projects, including:

building miniaturised motors - or microactuators - to retrieve blood clots from deep within the brain, enabling minimally invasive neurological intervention in people affected by strokes or aneurysms;
improving drug delivery via the lungs through new techniques that can atomise large biomolecules - including drugs, DNA, antibodies and even cells - into tiny droplets to avoid the damage of conventional nebulisation;
developing innovative energy harvesting techniques that change the way batteries are recharged, using novel materials that can draw on the energy generated simply by people walking around; and,
inventing ways to use water to remove toxins from fabric dyes, with new nanotechnologies that can facilitate the breaking down of those dyes with nanostructured catalysts.

"This facility is all about ensuring researchers have the freedom to imagine and safely realise the impossible at tiny scales and beyond," Professor Friend said.

"Having access to purpose-designed laboratories and leading-edge equipment opens tremendous opportunities for RMIT and for those we collaborate with, enabling us to advance the development of truly smart technology solutions to some of our most complex problems."

Laboratories in the MNRF will include:

Gas sensors laboratory
Metrology laboratory
Novel Fabrication laboratory
PC2 mammalian cell laboratory
Photolithography laboratory
Physical vapour deposition laboratory
Polydimethylsiloxane (PDMS) and nanoparticle laboratory
Wet etch laboratory
Support laboratory

The MNRF will be a key enabler of RMIT's flagship Health Innovations Research Institute and Platform Technologies Research Institute.

A unique teaching facility will also be affiliated with the MNRF.

The Micro Nano Teaching Facility (MNTF) is the first of its kind in Australia, enabling undergraduate and postgraduate engineering student trainees to study clean room operations and micro-fabrication.

####

About RMIT University
MIT University is a global university of technology and design, focused on creating solutions that transform the future for the benefit of people and their environments.

One of Australia’s original educational institutions founded in 1887, RMIT is now the nation’s largest and most internationalised tertiary institution with more than 82,000 students.

The University enjoys an international reputation for excellence in professional and practical education, applied research, and engagement with the needs of industry and the cities in which it is located.

RMIT has three campuses in Melbourne, two campuses in Vietnam and an office in Barcelona, Spain. The University also offers programs through partners in Singapore, Hong Kong, mainland China, Indonesia, Sri Lanka, Spain and Germany, and enjoys research and industry partnerships on every continent.

RMIT is ranked in the top 15 among all Australian universities (2013 QS World University Rankings) and has a 5-Star QS ranking for excellence in higher education.

In 2013, RMIT was named International Education Provider of the Year in the inaugural Victorian International Education Awards.

For more information, please click here

Contacts:
Gosia Kaszubska
+61 3 9925 3176
+61 417 510 735

David Glanz

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Videos/Movies

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Openings/New facilities/Groundbreaking/Expansion

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project