Home > Press > Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures
Abstract:
Iranian scientists from Institute for Advanced Studies in Basic Sciences in Zanjan presented a new model that expresses the possibility for the formation of superconductivity properties at high temperature, independent from the type of the material.
The idea can be used in the production of various electronic nano-pieces in electronics and communications industries.
One of the reasons that superconductivity characteristic is not used in today technologies is that the characteristic is degraded as the temperature increases. On the other hand, it is very expensive to provide cold conditions for the good performance of superconductive materials. Efforts are currently being made to produce superconductors that are active at appropriate temperatures. The majority of the researchers try to produce high-temperature superconductors by combining various materials. This research presents a model that enables the formation of superconductivity at high temperatures, independent from the material type.
Result of the research show that there is a possibility of the creation of intra-layer superconductivity in graphene nanostructures. In this type of superconductivity, charge carriers that are condensed and play a major role in the creation of superconductivity belong to different layers of bi-layer graphene. There is unique symmetry in this type of superconductivity that results in the better reduction of the phenomenon at temperatures higher than 0 K. It was always believed that superconductivity would become weak and was destroyed at temperatures higher than 0 K.
According to the results, very accurate magnetic sensors can be designed, which are able to measure very weak magnetic waves of brain and to diagnose the disease by investigating the mechanism of the brain.
Results of the research have been published in Physical Review Letters, vol. 108, issue 14, April 2012, pp. 147001-147005.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Superconductivity
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Sensors
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |