Home > Press > Plasma tool for destroying cancer cells: Inducing biological tissue damage with an atmospheric pressure plasma source could open the door to many applications in medicine
![]() |
Abstract:
Plasma medicine is a new and rapidly developing area of medical technology. Specifically, understanding the interaction of so-called atmospheric pressure plasma jets with biological tissues could help to use them in medical practice. Under the supervision of Sylwia Ptasinska from the University of Notre Dame, in Indiana, USA, Xu Han and colleagues conducted a quantitative and qualitative study of the different types of DNA damage induced by atmospheric pressure plasma exposure, the paper is published in EPJ D as part of a special issue on nanoscale insights into Ion Beam Cancer Therapy. This approach, they hope, could ultimately lead to devising alternative tools for cancer therapy as well as applications in hospital hygiene, dental care, skin diseases, antifungal care, chronic wounds and cosmetics treatments.
To investigate the DNA damage from the so-called non-thermal Atmospheric Pressure Plasma Jet (APPJ), the team adopted a common technique used in biochemistry, called agarose gel electrophoresis. They studied the nature and level of DNA damage by plasma species, so-called reactive radicals, under two different conditions of the helium plasma source with different parameters of electric pulses.
They also identified the effect of water on DNA damage. To do so, they examined the role of reactive radicals involved in DNA damage processes occurring in an aqueous environment. They then compared them to previous results obtained in dry DNA samples.
The next step would involve investigating plasma made from helium mixtures with different molecular ratios of other gases, such as oxygen, nitrous oxide, carbon dioxide and steam, under different plasma source conditions. The addition of another gas is expected to increase the level of radical species, such as reactive oxygen species and reactive nitrogen species, known to produce severe DNA damage. These could, ultimately, help to destroy cancerous tumour cells.
Full bibliographic information
X.Han, W. A. Cantrell, E. E. Escobar and S. Ptasinska (2014), Plasmid DNA damage induced by induced by Helium Atmospheric Pressure Plasma Jet, European Physical Journal D, DOI 10.1140/epjd/e2014-40753-y
For more information visit: www.epj.org
####
About Springer Science+Business Media
Springer Science+Business Media (www.springer.com) is a leading global scientific publisher, providing researchers in academia, scientific institutions and corporate R&D departments with quality content via innovative information products and services. Springer is also a trusted local-language publisher in Europe – especially in Germany and the Netherlands – primarily for physicians and professionals working in the automotive, transport and healthcare sectors. Roughly 2,000 journals and more than 7,000 new books are published by Springer each year, and the group is home to the world’s largest STM eBook collection, as well as the most comprehensive portfolio of open access journals. Springer employs nearly 6,200 individuals across the globe and in 2011 generated sales of approximately EUR 875 million.
For more information, please click here
Contacts:
Joan Robinson
+49-6221-487-8130
joan.robinson@springer.com
Saskia Rohmer
tel. +49 6221 4878414
saskia.rohmer@springer.com
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Nanomedicine
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Dental
Innovations in dentistry: Navigational surgery, robotics, and nanotechnology October 2nd, 2020
First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020
Gas storage method could help next-generation clean energy vehicles: Tremendous amounts of hydrogen and methane can be stored in nanoscopic pores April 17th, 2020
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |