Home > Press > Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats
Excessive inflammation after tooth replantation induces several omplications including root resorption, termination of root formation and pulp necrosis, caused by excessive inflammation. NF-kB decoy ODN-loaded PLGA nanosphere inhibits post-operative inflammation, thus enhances periodontal regeneration, including reduction of root resorption, and continuation of root formation. CREDIT Department of Orthodontic Science, TMDU |
Abstract:
Completely dislodging a tooth from the socket is not generally considered a reversible process. However, this injury is most common in children, whose roots may not be completely developed, meaning quick reactions could save the tooth. Researchers are continually looking to increase the chance of success in tooth replantation. Now, a team led by researchers from Tokyo Medical and Dental University (TMDU) has reported a gene delivery system that promotes the healing process in a rat model. Their findings are published in Journal of Periodontology.
Replanting a tooth as quickly as possible after it is knocked out provides its best chance of survival. Speed ensures that the periodontal ligament (PDL)—the tissue that holds the tooth in place—and dental pulp do not start to die. Fibers can then reattach, and the blood vessels and pulp tissue can continue to grow and support the tooth.
However, many factors can affect the success of replantation—for example, inflammation—which can stop the PDL regenerating.
One of the messaging pathways that controls inflammation is the nuclear factor-kappa B (NF-κB) pathway. Activation of this pathway produces the proteins that induce inflammation. And inflammation leads to osteoclasts—bone degrading cells—breaking down the tissue around the root of the tooth, often spelling the end of any hope of successful replantation.
A recently reported way of stopping the NF-κB pathway is to use NF-κB decoy oligodeoxynucleotides (ODNs), which prevent NF-κB biding to its target genes. However, getting the large NF-κB decoy ODNs to where they need to be to have an effect can be challenging.
The TMDU researchers loaded NF-κB decoy ODNs into poly(lactic-co-glycolic acid) nanospheres to give NF-PGLA. Incorporating the therapeutic cargo into the nanosphere system protected it until it reached the site of action.
“We tested our delivery system in rats by immersing extracted incisors in different solutions before replanting them,” explains study first author Kai Li. “We found that the teeth treated with NF-PGLA showed significantly greater dental root thickness, which is necessary for successful replantation.”
The researchers also found that no root resorption—dissolving of the tooth root—was observed 7 days after treatment with NF-PGLA. In addition, there were fewer osteoclasts 7 and 14 days after replantation for NF-PGLA-treated teeth.
“Application of our NF-PGLA system encouraged the healing process by preventing the exacerbation of inflammation,” says study corresponding author Yuji Ishida. “We believe that our delivery system will contribute to significantly improving the success of tooth replantation in the clinic,” adds principal investigator Takashi Ono.
####
For more information, please click here
Contacts:
Takashi Ono
Tokyo Medical and Dental University
Expert Contact
Yuji Ishida
Tokyo Medical and Dental University
Copyright © Tokyo Medical and Dental University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Dental
Innovations in dentistry: Navigational surgery, robotics, and nanotechnology October 2nd, 2020
First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020
Gas storage method could help next-generation clean energy vehicles: Tremendous amounts of hydrogen and methane can be stored in nanoscopic pores April 17th, 2020
Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||