Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ion beams pave way to new kinds of valves for use in spintronics

The illustration shows the process of fabricating lateral spin valves. Left: Initially, the alloy’s structure is highly ordered. Iron atoms (blue) and aluminium atoms (white) are arranged in continuous layers. Center: Ion bombardment (red) upsets the order leading to a random distribution of atoms. Only narrow stripes that are coated with a protective polymer resist are spared, and retain their atomic ordering. Right: Ion-irradiated regions become ferromagnetic. With the help of an externally applied magnetic field, the stripes can be arranged parallel or antiparallel, as shown here.
Image: Sander Münster
The illustration shows the process of fabricating lateral spin valves. Left: Initially, the alloy’s structure is highly ordered. Iron atoms (blue) and aluminium atoms (white) are arranged in continuous layers. Center: Ion bombardment (red) upsets the order leading to a random distribution of atoms. Only narrow stripes that are coated with a protective polymer resist are spared, and retain their atomic ordering. Right: Ion-irradiated regions become ferromagnetic. With the help of an externally applied magnetic field, the stripes can be arranged parallel or antiparallel, as shown here.

Image: Sander Münster

Abstract:
Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have tested a new approach to fabricating spin valves. Using ion beams, the researchers have succeeded in structuring an iron aluminium alloy in such a way as to subdivide the material into individually magnetizable regions at the nanometer scale. The prepared alloy is thus able to function as a spin valve, which is of great interest as a candidate component for use in spintronics. Not only does this technology use electron charge for purposes of information storage and processing, it also draws on its inherent magnetic properties (that is, its spin). Spintronics holds great potential for magnetic storage media. For example, with magnetic random access memories a computer's time-consuming start-up phase may cease to be an issue - as in that case it would be operational as soon as it is switched on.

Ion beams pave way to new kinds of valves for use in spintronics

Dresden, Germany | Posted on February 18th, 2014

Typically, a spin valve is made up of successive non-magnetic and ferromagnetic layers. This layering is a very involved process and getting these components to connect reliably presents a major challenge. This is why HZDR researcher Dr. Rantej Bali and his colleagues are taking an entirely different approach. "We've built structures with lateral spin valve geometry where the different magnetic regions are organized one next to the other as opposed to in layers one on top of the other," explains Bali. The idea behind this new geometry is to facilitate working in parallel on larger surfaces while keeping fabrication costs low.

First, the scientists annealed a thin layer of an iron aluminum alloy (Fe60Al40) at 500 degrees C. This resulted in formation of a highly ordered structure, where every other atomic layer was made up exclusively of iron atoms. According to the researchers' expectations, this substance behaved as a paramagnetic material - in other words, the magnetic moments became disordered. After this, the scientists coated the alloy with a protective polymer resist so that a striped pattern was produced on its surface. The resist-free regions were alternatingly 2 and 0.5 micrometers wide, and crucially, were separated from each other by 40 nanometer wide strips of resist.

Next, the material was irradiated with neon ions at the HZDR's Ion Beam Center - with important consequences. The scientists were able to demonstrate that the irradiated material exhibits very interesting properties. Beneath the protective resist strips, the material remains paramagnetic while the resist-free narrow and wide stripes actually become ferromagnetic. "A spin valve is switched via the magnetic field. Changing the spins' alignment - parallel or antiparallel - changes the electrical resistance. We're interested in the magnitude of the effect," says Bali. An externally applied magnetic field aligns the spins within these regions. Depending on the magnetic field's strength, they can be adjusted to run in parallel or antiparallel. This magnetization is permanent and is not lost if the outer field is switched off.

The reason for this behavior lies in the fact that the ion beam changes the alloy's structure. "The ions destroy the iron layers' highly ordered structure. They knock the atoms out of position and other atoms take their place, and, as a result, the iron and aluminum atoms become randomly distributed," explains Sebastian Wintz, a Ph.D. student who was part of the team of researchers. A small dose of ions is enough to play this atomic-level game of tag. Wintz characterizes the process as follows: "It's a cascade, really. A single ion is capable of displacing up to 100 atoms." The regions beneath the polymer resist stripes, on the other hand, are impenetrable to the ions - which is why these regions remain paramagnetic and separate out the ferromagnetic stripes.

Working closely with researchers at the Helmholtz Center Berlin (HZB), the HZDR scientists were able to visualize the material's magnetic structure using the special SPEEM (spin-resolved photoemission microscope) at the HZB's BESSY II synchrotron. The microscopic images showed the existence of regions with paramagnetic and ferromagnetic order demonstrating the high level of spatial resolution that can be realized by the structuring process using ion beams.

Additional experiments will allow Rantej Bali and his colleagues to investigate the properties of these magnetically structured materials. The researchers are also trying to figure out the limits to miniaturization of magnetic nanostructures.

####

For more information, please click here

Contacts:
Christine Bohnet

49-351-260-2450

Dr. Rantej Bali
Sebastian Wintz
Institute of Ion Beam Physics and Materials Research at HZDR
Phone +49 351 260 - 2919

Copyright © Helmholtz-Zentrum Dresden-Rossendorf

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication: Rantej Bali et al., Nano Letters 14, 435 (2014), DOI: 10.1021/nl404521c:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Spintronics

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Quantum Computing

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project