Home > Press > Environmentally friendly cement is stronger than ordinary cement
The IRIS instrument is viewed from above. The cement sample is lowered about 120 cm into a cryostat so that it is hit by the neutron beam. The cryostat is emptied of air to avoid signal noise from air.
Credit: Johan Jacobsen, Niels Bohr Institute |
Abstract:
New research from the Niels Bohr Institute shows that cement made with waste ash from sugar production is stronger than ordinary cement. The research shows that the ash helps to bind water in the cement so that it is stronger, can withstand higher pressure and crumbles less. At the same time, energy is saved and pollution from cement production is reduced. The results are published in the scientific journal, Scientific Reports.
Cement is comprised of chalk and clay, which are mixed together and heated at high temperatures in a cement kiln. The mixture is then crushed into a powder. When the cement powder is mixed with water a chemical process takes place, which causes the cement mixture to harden. Cement is used as a building material throughout the world.
In some countries where sugar cane is grown, agricultural waste product from sugar production has been added to the cement mixture for many years. Once the sugar has been extracted from the sugar can you are left with a lot of fibre waste, which is used as fuel for energy production. From the energy production you get a lot of ash, which needs to be disposed of. In some countries, like Cuba and Brazil, the ash is added into cement mixtures.
"I have been studying cement using quasi-elastic neutron scattering for several years and researchers from Brazil asked whether I wanted to analyse samples of cement mixed with waste products in the form of sugar cane ash. I decided to say yes to the project, which aimed to investigate the properties on a nano-scale and map the mobility of water in the cement. The quality and strength of cement is directly related to how much of the water is chemically bonded. The more the water can move around, the worse it is for the strength and durability," explains Heloisa Bordallo, who does research in nanophysics at the Niels Bohr Institute at the University of Copenhagen.
Neutron scattering reveals water
Heloisa Bordallo was sent a number of cement samples from Brazil. The samples contained varying amounts of ash from sugar can production. Their innermost dynamics were then examined. This took place at the ISIS facility in the UK. The samples were placed in an instrument where they were bombarded by neutrons.
"Using neutron scattering, we can see how the water inside the sample moves. Neutrons are shot into the sample and when neutrons hit the water's hydrogen atoms, they interact and the neutrons scatter and are picked up by the detectors. We repeat this for several hours and by analysing the data we can determine how the water inside the sample is moving and also determine its local environment," explains Johan Jacobsen, who performed the experiments as part of his thesis for the graduate programme in physics at the Niels Bohr Institute.
The experiments showed that the cement mixed with approx. 20 percent ash had good properties. The water the cement pores was bound to the ash and moved around less. This explains why the ash cement is stronger, can withstand higher pressure and will crumble less.
Potential for environmentally friendly ash cement
Cement typically takes a week to solidify. After one month, 70 percent of the process has been completed, but the process continues for many years. Ordinary cement is generally stronger during the first few months than the ash cement, but after a year the ash cement is stronger than the ordinary cement.
Ash cement has been used for many years, but only locally. Now it could have great potential.
"The cement industry is huge and if they are to adopt a new idea, they need to have proof that it works. Using quasi-elastic neutron scattering we have now studied cement mixed with ash and shown what is happening and why it is stronger. Cement production uses a lot of energy and emits large amounts of CO2, because it needs to be heated up to very high temperatures. Cement production accounts for 5 percent of global CO2 emissions. If you replace 20 percent of the content with ash, you are saving both CO2 emissions and raw materials, as you use 20 percent less by utilizing a waste product like ash," says Heloisa Bordallo.
####
For more information, please click here
Contacts:
Gertie Skaarup
45-35-32-53-20
Heloisa N. Bordallo
Associate Professor
Niels Bohr Institute
University of Copenhagen
+45 2130-8829
http://www.nbi.ku.dk/english/
Copyright © University of Copenhagen - Niels Bohr Institute
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Article in Scientific Reports:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Construction
Temperature-sensing building material changes color to save energy January 27th, 2023
Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022
Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||