Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nano Research Could Impact Flexible Electronic Devices

North Dakota State University

Research by a team led by Dr. Erik Hobbie, North Dakota State University, Fargo, suggests that thin films from metallic single-wall carbon nanotubes provide higher conductivity and better durability. The research results, published in ACS Nano, could one day impact flexible electronics such as solar cells and wearable sensors.
North Dakota State University

Research by a team led by Dr. Erik Hobbie, North Dakota State University, Fargo, suggests that thin films from metallic single-wall carbon nanotubes provide higher conductivity and better durability. The research results, published in ACS Nano, could one day impact flexible electronics such as solar cells and wearable sensors.

Abstract:
A discovery by a research team at North Dakota State University, Fargo, and the National Institute of Standards and Technology (NIST), shows that the flexibility and durability of carbon nanotube films and coatings are intimately linked to their electronic properties. The research could one day impact flexible electronic devices such as solar cells and wearable sensors. The research also provided a promising young high school student the chance to work in the lab with world-class scientists, jumpstarting her potential scientific career.

Nano Research Could Impact Flexible Electronic Devices

Fargo, ND | Posted on January 13th, 2012

The NDSU/NIST research team, led by Erik Hobbie, Ph.D., is working to determine why thin films made from metallic single-wall carbon nanotubes are superior for potential applications that demand both electronic performance and mechanical durability. "One simple reason is that the metallic nanotubes tend to transport charge more easily when they touch each other," said Hobbie. "But another less obvious reason has to do with how much the films can flex without changing their structure at very small scales."

Results from the study appear in "Electronic Durability of Flexible Transparent Films from Type-Specific Single-Wall Carbon Nanotubes," published in ACS Nano.

The team includes NDSU graduate student John M. Harris; postdoctoral researcher Ganjigunte R. Swathi Iyer; Anna K. Bernhardt, North Dakota Governor's School attendee; and NIST researchers Ji Yeon Huh, Steven D. Hudson and Jeffrey A. Fagan.

There is great interest in using carbon nanotube films and coatings as flexible transparent electrodes in electronic devices such as solar cells. "Our research demonstrates that the flexibility and durability of these films are intimately linked to their electronic properties," said Hobbie. "This is a very new idea, so hopefully, it will generate a new series of studies and questions focused on the exact origins and consequences of this effect."

Such research could potentially result in material that reduces solar cell costs, and leads to the ability to use them in clothing or foldable electronics. Electronic devices currently on the market that require transparent electrodes, like touch screens and solar cells, typically use indium tin oxide, an increasingly expensive material. "It is also very brittle," said Hobbie, "implying that it cannot be used in devices that require mechanical flexibility like wearable or foldable electronics."

Single-wall carbon nanotubes show significant promise as transparent conductive coatings with outstanding electronic, mechanical and optical properties. "A particularly attractive feature of these films is that the physical properties can be tuned through the addition or subtraction of a relatively small number of nanotubes," said Hobbie. "Thin films made from such materials hold tremendous potential for flexible electronics applications, including the replacement of indium tin oxide in liquid crystal displays and photovoltaic devices."

Thin films made from metallic single-wall carbon nanotubes show better durability as flexible transparent conductive coatings, which the researchers attribute to a combination of superior mechanical performance and higher interfacial conductivity. The research team found significant differences in the electronic manifestations of thin-film wrinkling, depending on the electronic type of the nanotubes, and examined the underlying mechanisms.

The results of this study suggest that the metallic films make better flexible transparent conductive coatings; they have higher conductivity and are more durable. "Our results are relevant to a number of ongoing efforts in transparent conducting films and flexible electronic devices," said Hobbie.

The research was supported by the National Science Foundation through CMMI-0969155 and the U.S. Department of Energy through DE-FB36-08GO88160.

The opportunity to work on such research was new to Anna Bernhardt, a high school junior from a town of 1,000 people in western North Dakota. She was among 66 of the most academically driven high school sophomores and juniors who attended a six-week intensive summer residential program on the NDSU campus for scholastically motivated students in the state.

Students receive concentrated instruction from 40 NDSU faculty through discussion groups, labs, field trips and other activities. The state of North Dakota funds the cost of participation for North Dakota students who are accepted into the program. It's available free to public school students, while private and homeschool students selected for the program can make arrangements to attend for free through their local public school district.

While it is unusual for a young student to be involved in nanotechnology research at this level, it presented an opportunity for everyone involved. Bernhardt prepared single-wall carbon nanotube samples and participated in testing of the samples. "The experience of working in a research setting has helped me to decide that I would love to do more research in the future," said the young scientist. "The biggest benefit of working in the lab was getting a taste of the true research experience. Without North Dakota's Governor's School, I would never have been able to have this experience and surely wouldn't be so certain that I would like to do more research in the future."

Students who participate in the residential summer science program at NDSU also present their research in poster presentations. "As a young student interested in science and engineering, it gives her a great start on her career," said Dr. Hobbie. When she graduates from high school, Bernhardt plans to major in physics.

About NDSU's Materials and Nanotechnology Graduate Program

Dr. Erik Hobbie is a professor in the Department of Physics and in the Department of Coatings and Polymeric Materials at NDSU. He also serves as director of NDSU's Materials and Nanotechnology graduate program that offers students a unique opportunity to participate in interdisciplinary research. NDSU faculty from chemistry, civil engineering, coatings and polymeric materials, mechanical engineering, and physics contribute to the Materials and Nanotechnology program. Researchers in the program also collaborate with the Center for Nanoscale Science and Engineering at NDSU. Hobbie previously served as a senior scientist at the National Institute of Standards and Technology. He received his Ph.D. in physics from the University of Minnesota. www.ndsu.edu/materials_nanotechnology/

####

About North Dakota State University
North Dakota State University, Fargo, is notably listed among the nation’s top 108 public and private universities in the Carnegie Commission on Higher Education’s elite category of “Research Universities/Very High Research Activity.” As a student-focused, land grant, research institution with more than 14,000 students, NDSU is listed in the top 40 research universities in the U.S. without a medical school, based on research expenditures reported to the National Science Foundation. At the 55-acre NDSU Research & Technology Park, faculty, staff and students work with private sector researchers on leading-edge projects. www.ndsu.edu/research

About the North Dakota’s Governor’s School

Established in 1990, the North Dakota Governor’s School is an intensive six-week summer residential program in science, mathematics, English, business, and performing or visual arts, for qualified North Dakota high school sophomores or juniors. Located on the campus of North Dakota State University, Fargo, the science portion of the program pairs students with a mentor scientist and a research group to further develop laboratory skills and quantitative data techniques. The state of North Dakota funds the program, available at no cost to qualified North Dakota students selected to participate. www.ndsu.edu/govschool/

For more information, please click here

Contacts:
Dr. Erik Hobbie
701.231.7049


Carol Renner
701.231.5174

Copyright © North Dakota State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Flexible Electronics

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

CityU awarded invention: Soft, ultrathin photonic material cools down wearable electronic devices June 30th, 2023

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project