Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Optical nanoantennas enable efficient multipurpose particle manipulation

Concept art depicting the various potential BNA trapping states
Concept art depicting the various potential BNA trapping states

Abstract:
University of Illinois researchers have shown that by tuning the properties of laser light illuminating arrays of metal nanoantennas, these nano-scale structures allow for dexterous optical tweezing as well as size-sorting of particles.

Optical nanoantennas enable efficient multipurpose particle manipulation

Champaign, IL | Posted on January 13th, 2012

"Nanoantennas are extremely popular right now because they are really good at concentrating optical fields in small areas," explained Kimani Toussaint, Jr., an assistant professor of mechanical science and engineering at the University of Illinois at Urbana-Champaign. "In this work, we demonstrate for the first time the use of arrays of gold Bowtie Nanoantenna Arrays (BNAs) for multipurpose optical trapping and manipulation of submicrometer- to micrometer-sized objects. We think that this could be a fruitful area to pursue, particularly because of the growing interest in lab-on-a-chip devices."

According to the researchers, the excellent field enhancement and confinement properties of BNAs enable highly efficient, optical tweezers which permit high-speed manipulation of submicrometer to micrometer-sized objects in aqueous environments using remarkably low-input power densities. These characteristics could be useful for optofluidic applications (e.g., lab-on-a-chip devices), manipulating biological matter with reduced specimen photo damage, formation of optical matter, and basic physics studies of colloidal dynamics.

"In contrast to other plasmonic tweezers, we find that BNAs permit particle trapping, manipulation and sorting utilizing only the optical parameter space, namely, low input power densities, wavelength and polarization," said Brian Roxworthy, a graduate student in Toussaint's research group and first author on the paper, "Application of Plasmonic Bowtie Nanoantenna Arrays for Optical Trapping, Stacking, and Sorting," which appears in the journal Nano Letters.

Using empirically obtained "optical trapping phase diagrams" to achieve the desired trapping response, the researchers demonstrated several types of particle manipulation, including single-beam optical tweezing of single particles over the entire nanoantenna area, single-beam optical tweezing of 2D hexagonal packed particles over the entire nanoantenna area, and optical sorting of particles by size; stacking of submicron to micron-sized particles in 3D.

According to Toussaint, this is the first demonstration of a range of particle manipulation behavior for a given nanoantenna array.
"We actually excite our nanoantennas off resonance, which to our knowledge is a first, and at the right input optical power, we take advantage of thermal effects combined with optical forces to enable tweezing of tens of particles at a time," Toussaint explained. "We show that very low power densities are required to achieve the aforementioned behavior. For example, we were able to carry out experiments using a standard laser pointer."

In addition to Toussaint, the lead investigator for the project, co-investigators include Gang Logan Liu, an assistant professor of electrical and computer engineering at Illinois, and former Illinois faculty member Nicholas Fang, who is now at the Massachusetts Institute of Technology.

####

For more information, please click here

Contacts:
Kimani C. Toussaint, Jr.
Department of Mechanical Science & Engineering
217/244-4088


If you have any questions about the
College of Engineering
or other story ideas, contact
Rick Kubetz
Engineering Communications Office
217/244-7716
writer/editor
University of Illinois at Urbana-Champaign.

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Lab-on-a-chip

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

RIT researchers build micro-device to detect bacteria, viruses: New process improves lab-on-chip devices to isolate drug-resistant strains of bacterial infection, viruses April 17th, 2020

Silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm March 13th, 2020

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project