Home > Press > UBC researchers invent new drug delivery device to treat diabetes-related vision loss
Abstract:
A team of engineers and scientists at the University of British Columbia has developed a device that can be implanted behind the eye for controlled and on-demand release of drugs to treat retinal damage caused by diabetes.
Diabetic retinopathy is the leading cause of vision loss among patients with diabetes. The disease is caused by the unwanted growth of capillary cells in the retina, which in its advanced stages can result in blindness.
The novel drug delivery mechanism is detailed in the current issue of Lab on a Chip, a multidisciplinary journal on innovative microfluidic and nanofluidic technologies.
The lead authors are recent PhD mechanical engineering graduate Fatemeh Nazly Pirmoradi, who completed the study for her doctoral thesis, and Mechanical Engineering Assoc. Prof. Mu Chiao, who studies nanoscience and microelectromechanical systems for biological applications.
The co-authors are Prof. Helen Burt and research scientist John Jackson at the Faculty of Pharmaceutical Sciences.
"We wanted to come up with a safe and effective way to help diabetic patients safeguard their sight," says Chiao who has a family member dealing with diabetic retinopathy.
A current treatment for diabetic retinopathy is laser therapy, which has side effects, among them laser burns or the loss of peripheral or night vision. Anti-cancer drugs may also used to treat the disease. However, these compounds clear quickly from the bloodstream so high dosages are required, thus exposing other tissues to toxicity.
Key to UBC's innovation is the ability to trigger the drug delivery system through an external magnetic field. The team accomplished this by sealing the reservoir of the implantable device - which is no larger than the head of a pin - with an elastic magnetic polydimethylsiloxane (silicone) membrane. A magnetic field causes the membrane to deform and discharge a specific amount of the drug, much like squeezing water out of a flexible bottle.
In a series of lab tests, the UBC researchers loaded the implantable device with the drug docetaxel and triggered the drug release at a dosage suitable for treating diabetic retinopathy. They found that the implantable device kept its integrity with negligible leakage over 35 days.
They also monitored the drug's biological effectiveness over a given period, testing it against two types of cultured cancer cells, including those found in the prostate. They found that they were able to achieve reliable release rates.
"The docetaxel retained its pharmacological efficacy for more than two months in the device and was able to kill off the cancer cells," says Pirmoradi.
The UBC device offers improvements upon existing implantable devices for drug delivery, says Chiao.
"Technologies available now are either battery operated and are too large for treating the eye, or they rely on diffusion, which means drug release rates cannot be stopped once the device is implanted - a problem when patients' conditions change."
Pirmoradi says it will be several years before the UBC device is ready for patient use. "There's a lot of work ahead of us in terms of biocompatibility and performance optimization."
Team members are also working to pinpoint all the possible medical applications for their device so that they can tailor the mechanical design to particular diseases.
####
For more information, please click here
Contacts:
Lorraine Chan
UBC Public Affairs
Tel: 604.822.2644
E-mail:
Copyright © University of British Columbia
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Device-discharges-drug.wmv - Microscopic image of device discharging drug
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Microfluidics/Nanofluidics
Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023
Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Lab-on-a-chip
Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021
Silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm March 13th, 2020
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||