Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > From nanocrystals to concrete components: X-SEED® crystals from BASF make concrete harden faster and reduce carbon emissions

Nanoscale crystal seeds also make concrete harden faster at normal outside temperatures (magnification 960:1 at 12 cm image width).
Nanoscale crystal seeds also make concrete harden faster at normal outside temperatures (magnification 960:1 at 12 cm image width).

Abstract:
They're everywhere, although we hardly spare a thought for them in everyday life - precast concrete components. Whether it's bridge girders, sewer pipes, staircases or railway sleepers: millions of these structural elements are industrially prefabricated and installed directly on-site. With X-Seed, BASF has succeeded in introducing an important innovation in this area. Because this hardening accelerator not only allows precast concrete units to be produced more rapidly and in better quality, it also considerably reduces energy consumption and the associated emissions of the greenhouse gas carbon dioxide (CO2).

From nanocrystals to concrete components: X-SEED® crystals from BASF make concrete harden faster and reduce carbon emissions

Ludwigshafen, Germany | Posted on May 16th, 2011

How does it work? The main ingredient of concrete is cement, which is obtained by firing limestone, clay and minerals at high temperatures to produce cement clinker. This process consumes enormous amounts of energy. The coarse-grained clinker is finally ground into a fine, gray cement powder which hardens after mixing with water. Chemically speaking, calcium silicate hydrate (CSH) and other compounds crystallize out of the cement during this process to form a compact artificial stone in which the aggregate substances like sand or gravel also contained in the concrete are embedded.

Prefabricated components are produced by pouring the still liquid concrete into formwork molds made of wood, metal or plastic. Only when the concrete has hardened sufficiently can this casting mold be opened and the component removed. At ambient temperatures of around 20 degrees Celsius it takes around twelve hours until the concrete is hard enough - valuable time during which the formwork cannot be re-utilized. To speed things up, the liquid concrete is often heated with steam. Although this accelerates the hardening process, it also demands much additional energy. Moreover, this treatment can lead to internal thermal stresses, discolorations and a coarser surface of the finished concrete part.

"X-Seed makes heat curing with all its disadvantages largely superfluous," explains Dr. Michael Kompatscher, responsible for BASF's European precast concrete component market. "With this additive, concrete hardens just as fast at 20 degrees Celsius as it otherwise does at 60 degrees Celsius.

And by a brilliantly simple method - because all it involves is adding something that's already present in the concrete anyway: calcium silicate hydrate." More precisely, it's the countless millions of tiny CSH crystals with a diameter of several nanometers suspended in liquid in X-Seed. Because of their nanosize, more very homogeneously distributed crystallization seeds can be accommodated in the same mass and thereby promote faster growth. When the concrete hardens, further molecules from the cement can attach themselves to these CSH seeds. The resulting crystals grow more densely and finally interlock to form the compact cement stone.

The mechanism of action of the hardening accelerator is explained by Professor Horst-Michael Ludwig of the Bauhaus University in Weimar: "As well as the temperature the availability of these crystallization seeds determines the rate of crystal formation and thus the hardening process. Normally, the CSH seeds first have to form spontaneously from several molecules released from the cement which accidentally come into contact with each other. X-Seed avoids this first barrier to crystallization by providing an excess of these tiny crystal seeds." Another factor is that the CSH crystals form in a more homogeneously distributed manner, adds the expert for construction materials who early turned his attention to this subject. "Without the additional seeds, the crystals first form on the surface of the cement grains, which are soon enveloped by a crystalline layer that delays the exchange of water and of the molecules released from the clinker and so also slows down the further hardening process."

Both these effects of the synthetic crystal seeds halve the time to formwork removal at 20 degrees Celsius from about twelve to six hours, without any detectable differences in the final product. This sounds simple in theory, admits BASF research scientist Dr. Luc Nicoleau who was centrally involved in the developing of X-Seed: "But the greatest challenge was to keep synthetic CSH crystals measuring only a few nanometers in a liquid suspension for prolonged periods without them fusing together and losing effectiveness."
Nanoscale crystal seeds also make concrete harden faster at normal outside temperatures (magnification 960:1 at 12 cm image width).
The BASF experts finally succeeded in performing this impressive feat of process technology thanks to their many years of experience with the dispersion of ultrafine materials.

When X-Seed, which can simply be shoveled into the concrete mixer along with the other ingredients, was finally launched on the market in 2009, its enormous use potential immediately became apparent. Besides the large market for precast concrete components, in which manufacturers can now produce more efficiently and rapidly and handle peak workloads more flexibly, this innovative accelerator also offers advantages for a number of other applications. The product shortens the construction times of roads, tunnels and airstrips - also in winter outdoor temperatures. The nanoproduct X-Seed not only saves costs, it also has an extremely positive influence on the energy and climate balance and hence the sustainability of the material concrete.

####

About BASF
BASF is the world’s leading chemical company. With about 109,000 employees, six Verbund sites and close to 385 production sites worldwide we serve customers and partners in almost all countries of the world.

Through new technologies we can tap into additional market opportunities. We conduct our business in accordance with the principles of sustainable development.

For more information, please click here

Contacts:
Birgit Lau
Corporate Media Relations
Phone: +49 621 60-20732
Mobile: +49 1520 9375117
Fax: +49 621 60-92693
E-Mail:
Postal Address: BASF SE, ZOA/CM - C100
67056 Ludwigshafen, Germany

Copyright © BASF

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Construction

Temperature-sensing building material changes color to save energy January 27th, 2023

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project