Home > Press > Working toward ‘smart windows’
Sarbajit Banerjee stands in front of a scanning electron microscopy image of tungsten-doped vanadium-oxide nanowires, which have a phase transition temperature close to room temperature. Photo: DOUGLAS LEVERE |
Abstract:
New materials science research at UB could hasten the creation of "smart" windows that reflect heat from the sun on hot summer days, but let in the heat in colder weather.
The findings concern a unique class of synthetic chemical compounds that are transparent to infrared light at lower temperatures, but undergo a phase transition to begin reflecting infrared when they heat up past a certain point.
An article detailing some of these discoveries appeared last week on the cover of the Journal of Physical Chemistry Letters. Additional papers have appeared online or in print in CrystEngComm, the Journal of Materials Chemistry and Physical Review B.
In the papers, UB researchers report they have managed to manipulate the trigger temperature for vanadium oxide, one such material. The advance is a crucial step toward making the compound useful for such applications as coatings for energy-saving windows.
By preparing vanadium oxide as a nanomaterial instead of in bulk, the scientists managed to lower the compound's trigger point from 153 degrees Fahrenheit to 90. Doping vanadium oxide nanowires with tungsten brought the temperature down further, to 7 degrees Fahrenheit. Molybdenum doping had a similar, but smaller, effect.
Researchers also found that they were able to induce a phase transition using an electric current instead of heat.
UB chemist Sarbajit Banerjee led the studies, collaborating with Sambandamurthy Ganapathy, UB assistant professor of physics, to head the Physical Review B research on the use of the electric current.
"Definitely, we are closer than we've ever been to being able to incorporate these materials into window coatings and other systems that sense infrared light," says Banerjee, assistant professor in the UB Department of Chemistry. "What we found is an example of how much of a difference finite size can make. You have a material like vanadium oxide, where the phase transition temperature is too high for it to be useful, and you produce it as a nanomaterial and you can then use it right away."
Banerjee and Ganapathy previously led research projects demonstrating that, in nanoscale form, two additional synthetic compounds—copper vanadate and potassium vanadate—exhibit phase transitions akin to those in vanadium oxide.
Banerjee's work has caught the attention of the National Renewable Energy Laboratory, which has contacted him to discuss developing window coatings that could improve the energy efficiency of buildings with heating or air conditioning systems. The technology could be particularly useful in places like Phoenix and Las Vegas that experience extreme summer temperatures.
Besides smart windows, vanadium oxide also could be useful in products including computer chips, night-vision instruments and missile-guidance systems, Banerjee said.
Two major awards are funding Banerjee's research on the material: A Cottrell Scholar Award from the Research Corporation for Science Advancement, announced this year, and a National Science Foundation CAREER award, the foundation's most prestigious award for junior investigators.
Both honors recognize Banerjee's accomplishments in teaching, as well as in research. He has mentored numerous graduate students, including Luisa Whittaker, Christopher J. Patridge and Jesus M. Velazquez, who appear as first authors on some of Banerjee's papers on vanadium oxide. Tai-lung Wu, supervised by Ganapathy, is the first author of the Physical Review B paper.
####
For more information, please click here
Contacts:
Sarbajit Banerjee
Chemistry
(716) 645-4140
Copyright © University of Buffalo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Watch a video of Sarbajit Banerjee talking about his “smart window” research.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Home
Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020
Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019
Iran Develops Water-Repellent Nano-Paint December 5th, 2018
Construction
Temperature-sensing building material changes color to save energy January 27th, 2023
Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022
Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||