Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > EU-funded team puts new semi-conductor material to the test

Abstract:
The electronic chips of the future might not be made of silicon or even graphene but of a material called molybdenite (MoS2). EU-funded research presented in the journal Nature Nanotechnology demonstrates that molybdenite is a highly effective semi-conductor that could be used to make transistors both smaller and more energy efficient.

EU-funded team puts new semi-conductor material to the test

EU | Posted on February 1st, 2011

EU support for the work came from the 5-year FLATRONICS ('Electronic devices based on nanolayers') project, a EUR 1.8 million European Research Council (ERC) Starting Grant awarded to Professor Andras Kis of the Laboratory of Nanoscale Electronics and Structures (LANES) at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland in 2009. ERC grants are channelled through the Ideas Programme of the Seventh Framework Programme (FP7).

Molybdenite is a mineral readily available in nature. Currently its main uses are as an element in steel alloys and as an additive in lubricants. Until now, its potential as a semi-conductor has remained largely unexplored.

'It's a two-dimensional material, very thin and easy to use in nanotechnology,' says Professor Kis, who led the current study. 'It has real potential in the fabrication of very small transistors, light-emitting diodes (LEDs) and solar cells.'

According to Professor Kis and his colleagues, molybdenite offers significant advantages over silicon, which is widely used in electronics, and graphene, which is the most widely studied two-dimensional material and is commonly viewed as the electronics material of the future.

Silicon is a three-dimensional material, and so is more voluminous than molybdenite that can be fabricated in monolayers. 'In a 0.65-nanometre-thick sheet of MoS2, the electrons can move around as easily as in a 2-nanometre-thick sheet of silicon, but it's not currently possible to fabricate a sheet of silicon as thin as a monolayer sheet of MoS2,' explains Professor Kis.

Furthermore, transistors based on molybdenite would consume 100,000 times less energy in their standby state than conventional silicon transistors. This is because turning a transistor on and off requires a semi-conductor material with a 'band gap'. In physics, 'bands' are used as a way of describing the energy of electrons in a material. In semi-conductors, the term 'band gap' refers to the electron-free spaces between these bands. If the gap is neither too big nor too small, some electrons can jump across the gap, thereby offering researchers a way of controlling the electrical behaviour of the material and turning it on and off. Molybdenite has a 1.8 electron-volt band gap, making it ideal for turning transistors on and off.

Molybdenite's band gap also gives it the edge over graphene, which does not have a band gap in its pristine state. Although it is possible to make graphene that has a band gap, this increases the fabrication complexity and causes other problems.

'Our results provide an important step towards the realization of electronics and low-standby-power integrated circuits based on two-dimensional materials. Being a thin, transparent semiconducting material, MoS2 monolayers also present a wealth of new opportunities in areas that include mesoscopic physics, optoelectronics and energy harvesting,' the researchers conclude.

'With the possibility of fabricating large-area circuits using solution-based processing, our finding could be important for producing electronic devices that could combine the ease of processing associated with organic conductors with performance figures commonly associated with silicon-based electronics.'

For more information, please visit:

Ecole Polytechnique Fédérale de Lausanne (EPFL): www.epfl.ch

Nature Nanotechnology: www.nature.com/naturenanotechnology

European Research Council (ERC): erc.europa.eu

####

For more information, please click here

Copyright © CORDIS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Display technology/LEDs/SS Lighting/OLEDs

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project