Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UA Polymer Scientists Make Imprint On Nanolithography

Nanoparticle arrays on a topographically uneven surface
Nanoparticle arrays on a topographically uneven surface

Abstract:
Nanolithography, or surface patterning on a nanoscale, is critical for modern technology, but has been developed largely for patterning flat surfaces until recently. A team of University of Akron scientists discovered a new method for patterning curved surfaces. The technique creates patterns on curved or topographically uneven surfaces with stand-alone nanoparticles, opening new technology opportunities.

UA Polymer Scientists Make Imprint On Nanolithography

Akron, OH | Posted on December 11th, 2010

Findings by UA graduate students Sarang P. Bhawalkar, Jun Qian (a visiting student from Tianjin University, China), Michael C. Heiber, and assistant professor of polymer science Dr. Li Jia are available in the Nov. 16, 2010 issue of Langmuir, a publication of the American Chemical Society. See "Development of a Colloidal Lithography Method for Patterning Nonplanar Surfaces" at pubs.acs.org/doi/abs/10.1021/la1035147.

"Nanoparticles arranged in hexagonal patterns have been widely used for surface patterning before our work, but these particles touch and support each other," explains Jia. "We were curious to learn if we could use stand-alone particles not supporting each other. There are several advantages to this. Among them is the possibility of patterning curved or uneven surfaces. Consider traditional photolithography, which is highly efficient in putting complex circuits on flat computer chips, but inapt at patterning surfaces that are not flat."

The challenge, according to Jia, was to secure the pattern against the lateral capillary force. When this challenge was presented to Sarang, his solution was to dip-coat a layer of polymer adhesive.

"It worked like a charm," Jia says.

According to Jia, the method is a breakthrough due to adaptation to topographic features ranging from macroscopic to microscopic scales. The team is currently working on fabrication of surfaces with a combination of several advanced properties such as self-cleaning, anti-reflection and anti-icing, says Jia, who notes the desirability of these surface properties in skyscrapers, aircrafts, solar panels and residential windows.

The researchers are testing their lithography method on large surfaces and durability of the patterns when subjected to temperature fluctuations and abrasion. Jia adds that he and his colleagues' next step, in collaboration with other experts, is to explore the applications of their lithography method in optical circuitry, imaging and sensing, and bioengineering.

####

About University of Akron
The University of Akron is the public research university for Northeast Ohio. The Princeton Review listed UA among the “Best in the Midwest” in its 2010 edition of Best Colleges: Region-by-Region. Approximately 29,300 students are enrolled in UA’s 300 associate, bachelor’s, master’s, doctorate and law degree programs and 100 certificate programs at sites in Summit, Wayne, Medina and Holmes counties.

For more information, please click here

Contacts:
Denise Henry
330-972-6477

Copyright © University of Akron

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Home

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Iran Develops Water-Repellent Nano-Paint December 5th, 2018

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project