Home > Press > Agilent Technologies’ Atomic Force Microscopes Enable Advanced Studies of Photovoltaic Materials at South Dakota State University
![]()  | 
Abstract:
Agilent Technologies Inc. (NYSE: A) today announced that the Department of Electrical Engineering at South Dakota State University (SDSU) has installed three additional scientific-grade atomic force microscopes (AFMs).
Two of the new instruments, an Agilent 5500 AFM and an Agilent 5420 AFM, will be used by the nano research group, led by Dr. Venkat Bommisetty and other researchers at SDSU. The AFMs will be used to perform high-resolution electrical properties measurements of various photo-active materials and photovoltaic structures. These instruments will be installed in the Molecular Electronics Laboratory, a core-shared facility developed by SDSU's nano research group. The third instrument, an Agilent 5500 AFM, will be used by Dr. Qiquan Qiao, an assistant professor whose research focuses primarily on organic photovoltaics.  Dr. Qiao will use the 5500 to extend the scope of his studies in Kelvin force microscopy (KFM).
"We are very pleased to provide Dr. Bommisetty and Dr. Qiao with the advanced measurement capabilities, outstanding application flexibility, and intelligent instrument modularity required to meet their needs," stated Jeff Jones, operations manager for Agilent's nanoinstrumentation facility in Chandler, Arizona. "We look forward to continuing to work closely with both researchers in the upcoming years."
In 2007, Dr. Bommisetty spearheaded the purchase of SDSU's first Agilent AFM system, a key laboratory resource shared among members of the department. Dr. Bommisetty and Agilent then partnered to submit a National Science Foundation (NSF) instrument development grant proposal, which was subsequently funded in 2009. As a result, joint work on the development of an instrument for high-resolution electrical properties measurements under controlled environments is well underway.
"The goal of this partnership is to develop a scanning probe instrument that can probe performance-limiting factors in photovoltaic structures," said Dr. Bommisetty. "The scanning probe microscopes are key for evaluating materials properties and studying structure-property relationships." 
SDSU is using organic, inorganic and hybrid materials to engineer the nanoscale properties of new devices designed to convert solar energy into electricity. SDSU is procuring several AFM-based tools and each will be used to probe a specific property. A team of graduate students and postdoctoral researchers will complete the configuration of the AFMs by mid-2011. The facility will remain open for all the researchers. 
Dr. Bommisetty's research encompasses nanotechnology, molecular electronics, nanomaterials, bio-inspired materials, organic, inorganic and hybrid photovoltaics, nanosensors, thin films and surface science. Dr. Qiao's areas of interest include organic photovoltaics, organic light-emitting diodes, organic transistors, semiconducting polymers and dyes, and nanomaterials.
Contact Dr. Mukesh Kumar, coordinator of the Nano Lab, at  to schedule time at the SDSU facility.
####
About Agilent Technologies
Agilent Technologies Inc. (NYSE: A) is the world’s premier measurement company and a technology leader in chemical analysis, life sciences, electronics and communications. The company’s 18,500 employees serve customers in more than 100 countries. Agilent had net revenues of $5.4 billion in fiscal 2010. 
For more information, please click here
Contacts:
Janet Smith
+1 970 679 5397
Twitter: twitter.com/JSmithAgilent 
PR Blog: janetsmithagilent.wordpress.com
Joan Horwitz
+1 480 756 5905
Copyright © Agilent Technologies
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Display technology/LEDs/SS Lighting/OLEDs
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Thin films
    Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
    Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023
    New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022
    Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021
Academic/Education
    Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
    Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Chip Technology
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Programmable electron-induced color router array May 14th, 2025
Sensors
    Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
    Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Nanoelectronics
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
    Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
    Reduced power consumption in semiconductor devices September 23rd, 2022
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Tools
    Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
    Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Energy
    Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
    Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Solar/Photovoltaic
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
    Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
    Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||