Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Blacker Than Black

Multi-walled carbon nanotubes are tiny hollow tubes made of pure carbon about 10,000 times thinner than a strand of human hair. NASA is investigating their use to help suppress errant light that ricochets off instrument components and contaminates measurements. Credit: NASA
Multi-walled carbon nanotubes are tiny hollow tubes made of pure carbon about 10,000 times thinner than a strand of human hair. NASA is investigating their use to help suppress errant light that ricochets off instrument components and contaminates measurements. Credit: NASA

Abstract:
Black is black, right? Not so, according to a team of NASA engineers now developing a blacker-than pitch material that will help scientists gather hard-to-obtain scientific measurements or observe currently unseen astronomical objects, like Earth-sized planets in orbit around other stars.

by Lori J. Keesey

Blacker Than Black

Greenbelt, MD | Posted on December 3rd, 2010

The nanotech-based material now being developed by a team of 10 technologists at the NASA Goddard Space Flight Center in Greenbelt, Md., is a thin coating of multi-walled carbon nanotubes — tiny hollow tubes made of pure carbon about 10,000 times thinner than a strand of human hair. Nanotubes have a multitude of potential uses, particularly in electronics and advanced materials due to their unique electrical properties and extraordinary strength. But in this application, NASA is interested in using the technology to help suppress errant light that has a funny way of ricocheting off instrument components and contaminating measurements.

Better than Paint

"This is a technology that offers a lot of payback," said engineer Leroy Sparr, who is assessing its effectiveness on the Ocean Radiometer for Carbon Assessment (ORCA), a next-generation instrument that is designed to measure marine photosynthesis. "It's about 10 times better than black paint" typically used by NASA instrument designers to suppress stray light, he said.

The technology works because of its super-absorption abilities. The nanotubes themselves are packed vertically much like a shag rug. The tiny gaps between the tubes absorb 99.5 percent of the light that hits them. In other words, very few photons are reflected off the carbon-nanotube coating, which means that stray light cannot reflect off surfaces and interfere with the light that scientists actually want to measure. The human eye sees the material as black because only a small fraction of light reflects off the material.

The team began working on the technology in 2007. Unbeknownst to the group, the New York-based Rensselaer Polytechnic Institute also had initiated a similar effort and announced in 2008 that its researchers had developed the darkest carbon nanotube-based material ever made — more than three times darker than the previous record. "Our material isn't quite as dark as their's," said John Hagopian, the principal investigator leading the development team. "But what we're developing is 10 times blacker than current NASA paints that suppress system stray light. Furthermore, it will be robust for space applications," he said.

That is an important distinction, said Carl Stahle, assistant chief of technology for Goddard's Instrument Systems and Technology Division. Not all technology can be used in space because of the harsh environmental conditions encountered there. "That's the real strength of this effort," Stahle said. "The group is finding ways to apply new technology and fly it on our instruments."

Big Breakthrough

The breakthrough was the discovery of a highly adhesive underlayer material upon which to grow the carbon nanotubes, which are just a few tens of nanometers in diameter. To grow carbon nanotubes, materials scientists typically apply a catalyst layer of iron to an underlayer on the silicon substrate. They then heat the material in an oven to about 750° C (1,382° F). While heating, the material is bathed in carbon-containing feedstock gas.

Stephanie Getty, the materials scientist on Hagopian's team, varied the underlayer as well as the thickness of the catalyst materials to create carbon nanotubes that not only absorb light, but also remain fixed to the material upon which they are grown. As a result, they are more durable and less likely to scratch off. The team also has grown durable nanotube coatings on titanium, a better structural material for space use. The team now is fine-tuning production techniques to assure consistent quality and light-suppression capabilities, Hagopian said.

New Capabilities Added

Should the team prove the material's suitability in space, the material would provide real benefits to instrument developers, Hagopian added.

Currently, instrument developers apply black paint to baffles and other components to reduce stray light. Because reflectance tests have shown the coating to be more effective than paint, instrument developers could grow the carbon nanotubes on the components themselves, thereby simplifying instrument designs because fewer baffles would be required. To accommodate larger components, the team now is installing a six-inch furnace to grow nanotubes on components measuring up to five inches in diameter. And under a NASA R&D award, the team also is developing a separate technique to create sheets of nanotubes that could be applied to larger, non-conforming surfaces.

In addition to simplifying instrument design, the technology would allow scientists to gather hard-to-obtain measurements because of limitations in existing light-suppression techniques or to gather information about objects in high-contrast areas, including planets in orbit around other stars, Hagopian said.

The ORCA team, which is fabricating and aligning an instrument prototype, is the first to actually apply and test the technology. The instrument is the front-runner for the proposed Aerosol/Cloud/Ecosystems (ACE) mission and requires robust light-suppression technologies because more than 90 percent of the light gathered by the instrument comes from the atmosphere. Therefore, the team is looking for a technique to suppress the light so that it doesn't contaminate the faint signal the team needs to retrieve.

"It's been an issue with all the (ocean sensors) we've flown so far," said ORCA Principal Investigator Chuck McClain.

Working with the ORCA team, Hagopian's group grew the coating on a slit, the conduit through which all light will pass on ORCA. "Having an efficient absorber is critical and the nanotubes could provide the solution," McClain said. "Right now, it looks promising," Sparr added. "If I can support them and they can continue advancing the technology so that it can be applied to other spacecraft components, it could be a very important development for NASA."

Goddard Chief Technologist Peter Hughes agrees, and, in fact, selected Hagopian and his team to receive his organization's 2010 "Innovator of the Year" award. "Our job is to develop and advance new technology that will ultimately result in better scientific measurements. Goddard has a well-deserved reputation for creating technologies that enhance instrument performance because we are adept at quickly infusing emerging technology for specific spaceflight applications. John's team demonstrated that key strength. And in doing so, he's leading the way in NASA's quest to bring about a new level of scientific discovery," Hughes said.

####

For more information, please click here

Copyright © NASA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project