Home > Press > Short-range scattering in quantum dots
Abstract:
Chinese researchers, reporting in the Journal of Applied Physics, published by the American Institute of Physics, have described a new breakthrough in understanding the way electrons travel around quantum dots. This might lead to promising new fabrication methods of novel quantum devices.
Guodong Li and colleagues at the National Center for Nanoscience and Technology in Beijing carried out an experiment using self-assembled quantum dots and a two-dimensional electron gas, and then fit the data to a model to find out the type of scattering exhibited.
Much recent work has examined the internal structure of electron states of these 10-nm-scale quantum dots, which are tiny, very efficient energy absorbers that can release energy at custom frequencies depending on their size. Self-assembled quantum dots hold great promise for inexpensive fabrication of all kinds of novel applications such as lasers, detectors, and optical data storage, as well as in nanotechnology research. What is missing, says the team, is an understanding of the scattering effects of the electrons. Optimizing scattering may be useful as a way of efficiently transporting electrons and thereby maximizing the performance of quantum dot-based devices.
To study these effects, the researchers placed an AlGaAs/GaAs two-dimensional electron gas (2DEG) near embedded GaSb/GaAs type-II quantum dots at a temperature of 4.2 K.
"The type-II GaSb quantum dots only confine the holes and not the electrons," says coauthor Chao Jiang, "so they are free to interact with the 2DEG."
Measurements at various voltages in the coupled system showed that the scattering mechanism is short-range, an idea verified by a simple model with a constant scattering potential.
"For the first time, we have clarified that the mechanism of electron scattering in this type of quantum dot system is short-range," says Chao. "The result is particularly significant for the future designing of very efficient quantum-dot-based devices."
####
For more information, please click here
Contacts:
Jason Socrates Bardi
301-209-3091
Copyright © American Institute of Physics
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||