Home > Press > SEMATECH Completes Fully Integrated 300mm Line for Via-Mid 3D ICs at UAlbany NanoCollege
Abstract:
Capabilities in Equipment, Processing, and Metrology to Advance 3D Integration Technologies for Future Devices
In another step towards driving the maturity of 3D IC integration, SEMATECH's 3D Interconnect program announced today the completion of its 300mm 3D IC pilot line, operating at the College of Nanoscale Science and Engineering's (CNSE) Albany NanoTech Complex. Dedicated to via-mid 3D applications, SEMATECH's development and exploratory platform includes all processes and test vehicles necessary to demonstrate the viability of the via-mid technology in conjunction with advanced CMOS.
"Our mission is to make 3D through-silicon via (TSV) both manufacturable and affordable. We will prove its very real advantages over conventional, two-dimensional designs — especially in increased functionality and performance," said Sitaram Arkalgud, director of 3D Interconnect at SEMATECH. "The completion of our 300mm R&D line is a significant step towards demonstrating technology solutions for TSV high-volume manufacturing."
Centered on 5um by 50 micron TSVs, the processes include TSV formation and metallization, wafer and die alignment, bonding, thinning, and the necessary metrology for these integration sequences. Supported by the conventional CMOS processing capabilities of CNSE, SEMATECH researchers are working jointly with chipmakers, equipment and materials suppliers, and universities on device interactions for fabrication at the 65nm node for planar and future scaling to 30nm for planar and non-planar CMOS technologies.
"The integration of the 3D Interconnect pilot line by SEMATECH at CNSE's Albany NanoTech Complex further enhances the leading-edge research and development capabilities at the UAlbany NanoCollege," said Richard Brilla, vice president of strategy, alliances and consortia at CNSE. "This marks another critical step forward in accelerating advanced manufacturing for innovative nanoelectronics technologies."
Arkalgud added, "Our program provides our members with access to complete 300mm R&D capability in 3D, allowing them to evaluate tools, process modules and even integration sequences in a realistic setting. Moreover, SEMATECH is playing a strategic role in working with the industry to drive manufacturability and forge consensus on technology options, standards, and cost modeling."
Launched in 2005, SEMATECH's 3D program was established to deliver robust 300mm equipment and process technology solutions for high volume TSV manufacturing. The 3D program has been actively engaging with leading edge equipment and materials suppliers and leveraging their expertise to deliver manufacturable process solutions. During 2009, the program began its considerable expansion, including developing and demonstrating 300mm tooling, materials, and process module solutions necessary for 3D TSV manufacturing for 300mm wafers in 2012 and beyond. In addition, SEMATECH's 3D program is developing a reference flow which contains the critical elements of interest in processing and metrology for its members. The use of a common reference flow will help drive consensus among members and the industry, and lend validity to a cost model.
3D ICs will play an important role in semiconductor manufacturing, given their potential to alleviate scaling limitations, increase performance by reducing signal delays, and reduce cost. TSVs can improve electrical performance, lower power consumption, enable the integration of heterogeneous devices, shrink device size, and reduce cost.
####
About SEMATECH
For 20 years, SEMATECH® (www.sematech.org) has set global direction, enabled flexible collaboration, and bridged strategic R&D to manufacturing. Today, we continue accelerating the next technology revolution with our nanoelectronics and emerging technology partners.
About CNSE
The UAlbany CNSE is the first college in the world dedicated to education, research, development, and deployment in the emerging disciplines of nanoscience, nanoengineering, nanobioscience, and nanoeconomics. CNSE’s Albany NanoTech Complex is the most advanced research enterprise of its kind at any university in the world. With over $6 billion in high-tech investments, the 800,000-square-foot complex attracts corporate partners from around the world and offers students a one-of-a-kind academic experience. The UAlbany NanoCollege houses the only fully-integrated, 300mm wafer, computer chip pilot prototyping and demonstration line within 80,000 square feet of Class 1 capable cleanrooms. More than 2,500 scientists, researchers, engineers, students, and faculty work on site at CNSE’s Albany NanoTech, from companies including IBM, AMD, GlobalFoundries, SEMATECH, Toshiba, Applied Materials, Tokyo Electron, ASML, Novellus Systems, Vistec Lithography and Atotech. For more information, visit www.cnse.albany.edu.
For more information, please click here
Contacts:
Erica McGill
518-649-1041
Copyright © SEMATECH
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||