Home > Press > Laboratory record: new chip platform increases LED efficiency by 30%
![]() |
The 30% increase in the efficiency of the diode results from improved material properties, further development of the thin-film platform and greater output efficiency – and unencapsulated chips benefit even more from the improvements. (Press picture: OSRAM) |
Abstract:
Prototype of a red Golden Dragon Plus LED sets new record
Developers at OSRAM Opto Semiconductors have succeeded in increasing the efficiency of red thin-film LEDs by 30% - a new record. The latest generation of thin-film chips benefit from an optimized chip platform which has potential for further improvements. This boost in efficiency is opening up new LED applications in general illumination, in projection and in the industrial sector.
The record efficiency for an LED of 119 lm/W at an operating current of 350 mA (136 lm/W at 70mA) has been achieved by the latest generation of a red 1 mm² thin-film chip (InGaAlP). The chip is accommodated in a Golden Dragon Plus package and emits at a wavelength of 615 nm (ë dominant). At present there is no LED with higher efficiency at this wavelength. Its efficiency has been measured at 44% (49% at 70mA), and even exceeds 50% for a wavelength of 642 nm.
Higher efficiency means greater output for the same current and lower power consumption in the relevant applications. There are also new design options because fewer chips will be needed and therefore less space to produce the same brightness. In addition, almost 50% less waste heat needs to be removed, which in turn considerably reduces the need for cooling. As brightness increases, the light sources can be made smaller and smaller.
The improved performance of the LEDs greatly expands the possible applications for this innovative light source. For example, exceptionally high efficiency means that warm white LED solutions can be produced with better quality of light and a better energy balance through color mixing than through the usual conversion of blue light.
"This will benefit all applications that use high-efficiency red, particularly projection applications. We expect to start equipping LED products with the new thin-film chips in about a year's time," said Dr. Wolfgang Schmid, who is responsible for developing this chip technology at OSRAM Opto Semiconductors.
####
About OSRAM
OSRAM is part of the Industry sector of Siemens and one of the two leading lighting manufacturers in the world. Its subsidiary, OSRAM Opto Semiconductors GmbH in Regensburg (Germany), offers its customers solutions based on semiconductor technology for lighting, sensor and visualization applications. OSRAM Opto Semiconductors has production sites in Regensburg (Germany) and Penang (Malaysia). Its headquarters for North America is in Sunnyvale (USA), and for Asia in Hong Kong. OSRAM Opto Semiconductors also has sales offices throughout the world. For more information go to www.osram-os.com.
For more information, please click here
Contacts:
Mrs. Marion Reichl
Osram GmbH
Tel: +49 (941) 850 1693
marion.reichl@osram-os.com
Copyright © OSRAM
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023
New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022
Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021
Possible Futures
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |