Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Organic nanowires open up possibilities

Abstract:
Swiss and German materials scientists have created simple networks of organic nanowires for future electronic and optoelectronic components.

Organic nanowires open up possibilities

EU | Posted on July 12th, 2010

The successful approach synthesises the complex and incredibly thin nanowire structures, and joins them to electrically conducting links (essentially creating an electronic circuit). The result is a culmination of work that began in 2006 under the PHODYE ('New photonic systems on a chip based on dyes for sensor applications scalable at wafer fabrication') project, which was funded EUR 1.92 million under the 'Information society technologies' (IST) Thematic area of the EU's Sixth Framework Programme (FP6).

The PHODYE project was initiated by Dr Angel Barranco from the Instituto de Ciencia de Materiales de Sevilla in Spain, who invited his former colleagues from the Swiss Federal Laboratories for Materials Testing and Research (Empa) to become involved. Empa is one of eight academic and industrial partners from four European countries (Belgium, Spain, Sweden and Switzerland) currently working on the project.

The aim is to develop a new family of sensor devices that combines dye sensor films and photonic structures. These incredibly sensitive gas sensors (made up of thin films that change colour and fluoresce on contact with certain gas molecules) could eventually be used to monitor vehicle emissions or to provide warnings of the presence of poisonous substances.

It was during their work on PHODYE that Empa's Ana Borras, Oliver Gröning and Pierangelo Gröning, and Jürgen Köble from Omicron Nanotechnology in Germany created the unique methodology for connecting organic nanowires. The result is a step towards the manufacture of cheaper and more flexible sensors, transistors, diodes, and other components, ranging from the micro all the way to the nano scale.

The physicists developed a new vacuum deposition process for synthesising organic nanowires and discovered how to manufacture nanowires with largely varying characteristics by appropriately selecting the starting molecule and the experimental conditions. Their method is particularly unusual and surprising because it has generated a perfectly monocrystalline structure by precisely controlling the substrate temperature, molecule flow and substrate treatment.

The team soon discovered that the new process was not only able to provide nanowires for the gas sensors needed under PHODYE, but it opened the door to creating complex 'nanowire electric circuits' for electronic and optoelectronic applications (e.g. solar cells).

The reason being that the range of nanowires can be used together (as required) to form networks with broadly varying properties. The secret to this lies in having decorated (using a sputter-coating process) the nanowires growing on the surface with silver nanoparticles. Thanks to these particles, more nanowires can be grown that are in electrical contact with the original wires - the foundation of an electrical circuit on the nanoscale.

Dr Gröning explained that the potential exists for being able to manufacture organic semiconductor materials, which are very attractive candidates for the manufacture of inexpensive, large area and flexible electronic components.

The team has presented the results of their finding in the journal Advanced Materials. The PHODYE project formally concludes in October 2010.

For more information, please visit:

Swiss Federal Laboratories for Materials Testing and Research (Empa):
www.empa.ch/plugin/template/empa/3/*/---/l=2

PHODYE www.phodye.icmse.csic.es/

Advanced Materials www3.interscience.wiley.com/journal/10008336/home

####

For more information, please click here

Copyright © CORDIS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project