Home > Press > Organic nanowires open up possibilities
Abstract:
Swiss and German materials scientists have created simple networks of organic nanowires for future electronic and optoelectronic components.
The successful approach synthesises the complex and incredibly thin nanowire structures, and joins them to electrically conducting links (essentially creating an electronic circuit). The result is a culmination of work that began in 2006 under the PHODYE ('New photonic systems on a chip based on dyes for sensor applications scalable at wafer fabrication') project, which was funded EUR 1.92 million under the 'Information society technologies' (IST) Thematic area of the EU's Sixth Framework Programme (FP6).
The PHODYE project was initiated by Dr Angel Barranco from the Instituto de Ciencia de Materiales de Sevilla in Spain, who invited his former colleagues from the Swiss Federal Laboratories for Materials Testing and Research (Empa) to become involved. Empa is one of eight academic and industrial partners from four European countries (Belgium, Spain, Sweden and Switzerland) currently working on the project.
The aim is to develop a new family of sensor devices that combines dye sensor films and photonic structures. These incredibly sensitive gas sensors (made up of thin films that change colour and fluoresce on contact with certain gas molecules) could eventually be used to monitor vehicle emissions or to provide warnings of the presence of poisonous substances.
It was during their work on PHODYE that Empa's Ana Borras, Oliver Gröning and Pierangelo Gröning, and Jürgen Köble from Omicron Nanotechnology in Germany created the unique methodology for connecting organic nanowires. The result is a step towards the manufacture of cheaper and more flexible sensors, transistors, diodes, and other components, ranging from the micro all the way to the nano scale.
The physicists developed a new vacuum deposition process for synthesising organic nanowires and discovered how to manufacture nanowires with largely varying characteristics by appropriately selecting the starting molecule and the experimental conditions. Their method is particularly unusual and surprising because it has generated a perfectly monocrystalline structure by precisely controlling the substrate temperature, molecule flow and substrate treatment.
The team soon discovered that the new process was not only able to provide nanowires for the gas sensors needed under PHODYE, but it opened the door to creating complex 'nanowire electric circuits' for electronic and optoelectronic applications (e.g. solar cells).
The reason being that the range of nanowires can be used together (as required) to form networks with broadly varying properties. The secret to this lies in having decorated (using a sputter-coating process) the nanowires growing on the surface with silver nanoparticles. Thanks to these particles, more nanowires can be grown that are in electrical contact with the original wires - the foundation of an electrical circuit on the nanoscale.
Dr Gröning explained that the potential exists for being able to manufacture organic semiconductor materials, which are very attractive candidates for the manufacture of inexpensive, large area and flexible electronic components.
The team has presented the results of their finding in the journal Advanced Materials. The PHODYE project formally concludes in October 2010.
For more information, please visit:
Swiss Federal Laboratories for Materials Testing and Research (Empa):
www.empa.ch/plugin/template/empa/3/*/---/l=2
PHODYE www.phodye.icmse.csic.es/
Advanced Materials www3.interscience.wiley.com/journal/10008336/home
####
For more information, please click here
Copyright © CORDIS
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023
New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022
Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||