Home > Press > University supports research initiatives
Abstract:
The University recently announced the administration will continue to push its goal of becoming one of the best research institutions in the world and announced an additional $40 million of internal funding to support nine projects.
By Joseph McMahon
"Doing research is fundamental to the University," Executive Vice President John Affleck-Graves said. "The goal of the University is fairly simple — to be a source for good throughout the world. We do that through three ways: our undergraduate program, our research and our Catholic tradition."
The funding is part of the second phase of the University's Strategic Research Initiative (SRI), which began last year and now stands as an $80 million investment. Projects funded examine nanotechnology, sustainable energy, climate change and the interaction of Roman Catholicism and Islam, among other subjects.
"We are studying some very important questions and some very important problems, and the impact of the things that we find is going to influence many important things around the world," Vice President for Research Robert Bernhard said. "We felt, as a panel, that we have a chance to make great breakthroughs in those areas."
Bernhard said research is different for each field, and the University's goal encompasses "research, scholarship and creative endeavor."
"Many people in the humanities do research, but they often refer to it as scholarship," he said. "For the scientist, research is the discovery of knowledge — learning something that no one has ever learned before. For the social scientist, it's looking at improving human conditions. For the engineer, it's solving problems. For the artist and people in architecture, it's the creative experience of being able to do something that's admired. The shorthand version is, it's all research."
Bernhard said pushing Notre Dame to become one of the premier research institutions would help the University attract an elite faculty.
"Faculty from the very best universities are all involved in some type of scholarship or research and want the opportunity to continue that work because it helps them have an impact on the world and stay current in their subject," he said. "Research is important for people and for impact."
According to Bernhard, students also stand to benefit from the funding because it will provide them with not only the best teachers, but also the opportunity to get involved.
"I think students benefit significantly both from the type of faculty that we will be able to recruit as part of these things and secondly from the opportunity for them to get involved," he said. "More and more of our undergraduate students are doing research, and I think that the trend is going to continue."
Assistant Professor of Biological Sciences Jessica Hellmann agreed, adding that expanding research will allow the best students to work with the best faculty.
"Of course, research plays a critical role in enhancing undergraduate and graduate student instruction; the best students want to work with the best faculty on the most pressing problems of the day," she said. "By having a great research infrastructure, Notre Dame can offer courses and experiences to students that are taught by leaders in the field."
Hellmann, whose project is titled "Notre Dame Collaboratory for the Study of Adaptation to Climate Change," said her research will allow her to have a real impact on the world beyond campus.
"Research provides the University the opportunity to engage and affect the world around us," she said. "Climate change adaptation will involve difficult decisions that are legal, moral, scientific and political, and Notre Dame is uniquely poised for this kind of interdisciplinary and complex thinking."
Engineering Professor Tracy Kijewski-Correa, whose project is titled "CYBER-EYE: A Cyber-Collaboratory for National Risk Modeling and Assessment to Mitigate the Impacts of Hurricanes in a Changing Climate," said it is important for Notre Dame to fund research initiatives because it is one of the areas where the University lags behind its peer institutions.
"As a university with a strong undergraduate educational tradition, we lag behind many of our peers who have been doing research from ‘day one,'" she said. "One part of their competitive advantage, aside from their long standing traditions in research, is the fact that they have endowments to seed research ideas."
Kijewski-Correa said her project will help contribute to Notre Dame's mission by finding a way to save the lives that are often lost in disastrous hurricanes.
"Notre Dame has had a long tradition of responding with great compassion and generosity to help the afflicted in the wake of these disasters," she said. "This project would deepen that mission commitment by helping us to lead the way on developing hazard-resilient communities using cutting edge research to prevent these losses altogether."
The panel that evaluated the merits of the research proposals, which included both Affleck-Graves and Bernhard, originally received 45 three-page proposals. Bernhard said the proposals were evaluated based on a set of criteria, which included mission fit, contribution to the research prominence of the University, educational benefits for students and whether the project was sustainable in the future.
"The University is trying to jump start areas of research that they believe will be important in the future and where Notre Dame can play a role," said Professor of Chemistry and Biochemistry Paul Huber, who is leading an initiative called "Assessment of the Impact of Nanoparticles on Human Health and the Environment."
Of the original 45, 10 were invited to write full proposals, which the panel then sent to be evaluated by the top experts in each of the respective fields.
"My proposal was selected based upon the uniqueness of the research approach, the importance of the research to Notre Dame's mission and the possibility that the research could provide a significant return on investment in terms of research dollars resulting from the proof-of-concept research proposed," said Professor of Biological Sciences Malcolm Fraser, who is spearheading the initiative entitled "Developing Group I Intron Antiviral Strategies for Treating HIV and HCV Infections."
Fraser, whose project will attempt to develop cures for HIV and HCV, said his project will help raise the University's visibility in the research field while also possibly curing one of mankind's greatest plagues.
"The unique approach we are establishing immediately provides high value and high visibility research for the University," he said. "If successful, we will have made a unique and significant contribution to the development of cures for these two extremely important diseases."
Professor of Chemistry and Biochemistry Gregory Hartland, whose project is called "A Focused Interdisciplinary Research Group in Nanostructured Solar Cells," said his project will help boost Notre Dame's reputation as a leader in the nanotechnology field while also attempting to find a cheap, sustainable source of energy.
"We think we will be able to get some very high profile papers out of our efforts, which will show (along with the work being done in the NDNano center) that Notre Dame is a serious player in nanoscience at an international level," he said. "Hopefully, this will also lead to new funding (from agencies such as the NSF and DOE), and establish Notre Dame as a leader in nanomaterials for solar energy applications."
But while Hartland examines the applications of nanotechnology, Huber will be looking at its possible perils, particularly whether or not nanoparticles are toxic to humans.
"A lot of different materials are being developed and released into the environment because they're not regulated," Huber said. "If the University is going to be involved in research activities, then the burden is on them to make sure everything is safe."
The other four projects chosen were the "Sustainable Energy Initiative" from Professor of Chemical and Bimolecular Engineering Joan Brennecke; the "N.D. Environmental Change Initiative" from Professor of Biological Sciences David Lodge; "Contending with Modernity: Islam and Roman Catholicism in a Secular Age" from Professor of History R. Scott Appleby; and "Laboratory for Enhanced Wind Energy Design — eWind" from Engineering Professor Thomas Corke.
Affleck-Graves said the projects have the potential to help shape the world.
"It's through their research that the faculty can change the world," he said. "Curing a neglected disease, tackling the problem of religious fundamental violence, energy and the environment — these are all ways that Notre Dame can help change the world."
In the future, Bernhard said he is undecided about whether another round of funding will take place, but he stressed that the SRI was just the beginning.
"These two rounds of investment are part of our process but they're not all of it," he said. "We're thinking about whether a third round makes sense and whether we would want to do a third round. We're not decided on that yet."
####
For more information, please click here
Copyright © Notre Dame
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Preparing for Nano
Disruptive by Design: Nano Now February 1st, 2019
How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016
Searching for a nanotech self-organizing principle May 1st, 2016
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Safety-Nanoparticles/Risk management
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||