Home > Press > Water may not run uphill, but it practically flies off new surface
Abstract:
Engineering researchers have crafted a flat surface that refuses to get wet. Water droplets skitter across it like ball bearings tossed on ice.
The inspiration? Not wax. Not glass. Not even Teflon.
Instead, University of Florida engineers have achieved what they label in a new paper a "nearly perfect hydrophobic interface" by reproducing, on small bits of flat plastic, the shape and patterns of the minute hairs that grow on the bodies of spiders.
"They have short hairs and longer hairs, and they vary a lot. And that is what we mimic," said Wolfgang Sigmund, a professor of materials science and engineering.
A paper about the surface, which works equally well with hot or cold water, appears in this month's edition of the journal Langmuir.
Spiders use their water-repelling hairs to stay dry or avoid drowning, with water spiders capturing air bubbles and toting them underwater to breathe. Potential applications for UF's ultra-water-repellent surfaces are many, Sigmund said. When water scampers off the surface, it picks up and carries dirt with it, in effect making the surface self-cleaning. As such, it is ideal for some food packaging, or windows, or solar cells that must stay clean to gather sunlight, he said. Boat designers might coat hulls with it, making boats faster and more efficient.
Sigmund said he began working on the project about five years ago after picking up on the work of a colleague. Sigmund was experimenting with microscopic fibers when he turned to spiders, noted by biologists for at least a century for their water-repelling hairs.
As a scientist and engineer, he said, his natural tendency was to make all his fibers the same size and distance apart. But he learned that spider hairs are both long and short and variously curved and straight, forming a surface that is anything but uniform. He decided to try to mimic this random, chaotic surface using plastic hairs varying in size but averaging about 600 microns, or millionths of a meter.
The results came as a great surprise.
"Most people that publish in this field always go for these perfect structures, and we are the first to show that the bad ones are the better ones," Sigmund said. "Of course this is a finding in a lab. This is not something you expect from theory."
To be sure, water-repelling surfaces or treatments are already common, spanning shoe wax to caulk to car windshield treatments. Scientists have also reproduced other biologically inspired water repelling surfaces, including ones patterned after lotus leaves.
But Sigmund said the UF surface may be the most or among the most water phobic. Close-up photographs of water droplets on dime-sized plastic squares show that the droplets maintain their spherical shape, whether standing still or moving. Droplets bulge down on most other surfaces, dragging a kind of tail as they move. Sigmund said his surface is the first to shuttle droplets with no tail.
Also, unlike many water-repelling surfaces, the UF one relies entirely on the microscopic shape and patterns of the material — rather than its composition.
In other words, physics, not chemistry, is what makes it water repellent. Theoretically, that means the technique could transform even the most water-sopping materials - say, sponges - into water-shedding ones. It also means that Sigmund's surfaces need never slough off dangerous chemicals. Provided the surface material itself is made safe, making it water repellent introduces no new risks.
Although he hasn't published the research yet, Sigmund said a variation of the surface also repels oil, a first for the industry. 
Sigmund said making the water or oil-repelling surfaces involves applying a hole-filled membrane to a polymer, heating the two, and then peeling off the membrane. Made gooey by the heat, the polymer comes out of the holes in the desired thin, randomly sized fibers.
While inexpensive, it is hard to produce successful surfaces with great reliability, and different techniques need to be developed to make the surfaces in commercially available quantities and size, Sigmund said. Also, he said, more research is needed to make the surfaces hardy and resistant to damage.
UF patents have already drawn a great deal of industry attention, he said. "We are at the very beginning but there is a lot of interest from industry, because our surface is the first one that relies only on surface features and can repel hot water, cold water, and if we change the chemistry, both oil and water."
Doctoral student Shu-Hau Hsu and undergraduate Eli Rubin contributed to the research, funded in part by a scholarship from Ohio-based OMNOVA Solutions Foundation.
####
About University of Florida
The University of Florida (UF) is a major, public, comprehensive, land-grant, research university. The state's oldest, largest and most comprehensive university, UF is among the nation's most academically diverse public universities. UF has a long history of established programs in international education, research and service. It is one of only 17 public, land-grant universities that belongs to the Association of American Universities.
For more information, please click here
Contacts:
Writer 
Aaron Hoover
352-392-0186 
Source 
Wolfgang Sigmund
352-246-3396 
Copyright © University of Florida
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Marine/Watercraft
    Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
    A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022
    Quantum tech in space? Scientists design remote monitoring system for inaccessible quantum devices February 11th, 2022
Govt.-Legislation/Regulation/Funding/Policy
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Academic/Education
    Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
    Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Patents/IP/Tech Transfer/Licensing
    Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
    Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021
    Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
Food/Agriculture/Supplements
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
    Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
    Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
    New discovery aims to improve the design of microelectronic devices September 13th, 2024
    Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Solar/Photovoltaic
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
    Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
    Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Construction
    Temperature-sensing building material changes color to save energy January 27th, 2023
    Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
    A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022
    Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||