Home > Press > Nanotechnologists From the University of Pennsylvania Collaborate to Form Near-Frictionless Diamond Material
Abstract:
Researchers at the University of Pennsylvania, the University of Wisconsin-Madison and IBM Research-Zürich have fabricated an ultra sharp, diamond-like carbon tip possessing such high strength that it is 3,000 times more wear-resistant at the nanoscale than silicon.
The end result is a diamond-like carbon material mass-produced at the nanoscale that doesn't wear. The new nano-sized tip, researchers say, wears away at the rate of one atom per micrometer of sliding on a substrate of silicon dioxide, much lower than that for a silicon oxide tip which represents the current state-of-the-art. Consisting of carbon, hydrogen, silicon and oxygen molded into the shape of a nano-sized tip and integrated on the end of a silicon microcantilever for use in atomic force microscopy, the material has technological implications for atomic imaging, probe-based data storage and as emerging applications such as nanolithography, nanometrology and nanomanufacturing.
The importance of the discovery lies not just in its size and resistance to wear but also in the hard substrate against which it was shown to perform well when in sliding contact: silicon dioxide. Because silicon -- used in almost all integrated circuit devices -- oxidizes in atmosphere forming a thin layer of its oxide, this system is the most relevant for nanolithography, nanometrology and nanomanufacturing applications.
Probe-based technologies are expected to play a dominant role in many such technologies; however, poor wear performance of many materials when slid against silicon oxide, including silicon oxide itself, has severely limited usefulness to the laboratory.
Researchers built the material from the ground up, rather than coating a nanoscale tip with wear-resistant materials. The collaboration used a molding technique to fabricate monolithic tips on standard silicon microcantilevers. A bulk processing technique that has the potential to scale up for commercial manufacturing is available.
Robert Carpick, professor in the Department of Mechanical Engineering and Applied Mechanics at Penn, and his research group had previously shown that carbon-based thin films, including diamond-like carbon, had low friction and wear at the nanoscale; however, it has been difficult to fabricate nanoscale structures made out of diamond-like carbon until now. 
Understanding friction and wear at the nanoscale is important for many applications that involve nanoscale components sliding on a surface. 
"It is not clear that materials that are wear-resistant at the macroscale exhibit the same property at the nanoscale," lead author Harish Bhaskaran, who was a postdoctoral research at IBM during the study, said. 
Defects, cracks and other phenomena that influence material strength and wear at macroscopic scales are less important at the nanoscale, which is why nanowires can, for example, show higher strengths than bulk samples. 
The study, published in the current edition of the journal Nature Nanotechnology, was conducted collaboratively by Carpick and postdoctoral researcher Papot Jaroenapibal of the Department of Mechanical Engineering and Applied Mechanics in Penn's School of Engineering and Applied Science; Bhaskaran, Bernd Gotsmann, Abu Sebastian, Ute Drechsler, Mark A. Lantz and Michel Despont of IBM Research-Zürich; and Yun Chen and Kumar Sridharan of the University of Wisconsin. Jaroenapibal currently works at Khon Kaen University in Thailand, and Bhaskaran currently works at Yale University.
Research was funded by a European Commission grant and the Nano/Bio Interface Center of the University of Pennsylvania through the National Science Foundation.
####
For more information, please click here
Contacts:
Jordan Reese 
215-573-6604  
 
Copyright © University of Pennsylvania
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Govt.-Legislation/Regulation/Funding/Policy
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Academic/Education
    Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
    Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Chip Technology
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Programmable electron-induced color router array May 14th, 2025
Memory Technology
    Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
    First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
    Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Nanoelectronics
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
    Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
    Reduced power consumption in semiconductor devices September 23rd, 2022
Materials/Metamaterials/Magnetoresistance
    First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
    Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Tools
    Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
    Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Alliances/Trade associations/Partnerships/Distributorships
    Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
    University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||