Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UCLA chemists create synthetic 'gene-like' crystals for carbon dioxide capture

Image of 3-D, synthetic DNA-like crystals created by Yaghi, Deng and colleagues. Credit: CNSI, UCLA–Department of Energy Institute of Genomics and Proteomics
Image of 3-D, synthetic DNA-like crystals created by Yaghi, Deng and colleagues. Credit: CNSI, UCLA–Department of Energy Institute of Genomics and Proteomics

Abstract:
UCLA chemists report creating a synthetic "gene" that could capture heat-trapping carbon dioxide emissions, which contribute to global warming, rising sea levels and the increased acidity of oceans.

The research appears in the Feb. 12 issue of the journal Science.

UCLA chemists create synthetic 'gene-like' crystals for carbon dioxide capture

Los Angeles, CA | Posted on February 11th, 2010

"We created three-dimensional, synthetic DNA-like crystals," said UCLA chemistry and biochemistry professor Omar M. Yaghi, who is a member of the California NanoSystems Institute (CNSI) at UCLA and the UCLA-Department of Energy Institute of Genomics and Proteomics. "We have taken organic and inorganic units and combined them into a synthetic crystal which codes information in a DNA-like manner. It is by no means as sophisticated as DNA, but it is certainly new in chemistry and materials science."

The discovery could lead to cleaner energy, including technology that factories and cars can use to capture carbon dioxide before it reaches the atmosphere.

"What we think this will be important for is potentially getting to a viable carbon dioxide-capture material with ultra-high selectivity," said Yaghi, who holds UCLA's Irving and Jean Stone Chair in Physical Sciences and is director of the CNSI's Center for Reticular Chemistry. "I am optimistic that is within our reach. Potentially, we could create a material that can convert carbon dioxide into a fuel, or a material that can separate carbon dioxide with greater efficiency."

The research was federally funded by the U.S. Department of Energy's Office of Basic Energy Sciences. The lead author is Hexiang "DJ" Deng, a UCLA graduate student of chemistry and biochemistry who works in Yaghi's laboratory.

"DNA is a beautiful molecule that has a way to code for information," Yaghi said. "How do you code information in a crystal in the same way that DNA does? DJ and I figured out a way to do this. The sequence of organic functionalities that decorates the pores of the crystals is most certainly a unique code.

"DJ has illustrated that one member of a series of materials he has made has 400 percent better performance in carbon dioxide capture than one that does not have the same code," he said.

In the early 1990s, Yaghi invented a class of materials called metal-organic frameworks (MOFs), sometimes described as crystal sponges, in which he can change the components nearly at will. MOFs have pores — openings on the nanoscale in which Yaghi and his colleagues can store gases that are usually difficult to store and transport. Molecules can go in and out of the pores unobstructed. Yaghi and his research team have made thousands of MOFs.

"We have created crystals of metal-organic frameworks in which the sequence of multiple functionalities of varying kind and ratios acts as a synthetic 'gene,'" Yaghi said. "With these multivariate MOFs, we have figured out a way to incorporate controlled complexity, which biology operates on, in a synthetic crystal — taking synthetic crystals to a new level of performance.

"This can be a boon for energy-related and other industrial applications, such as conversion of gases and liquids like carbon dioxide to fuel, or water to hydrogen, among many others," he said.

Yaghi has been collaborating with his former UCLA chemistry colleague and former CNSI director Sir J. Fraser Stoddart on how to take concepts from biology and incorporate them into a synthetic material.

"We hope the materials we are creating will introduce a new class of structures that have controlled complexity," Yaghi said. "Chemists and materials scientists are now able to ask new questions we have never asked before. Also, new tools for characterizing the sequences and deciphering the codes within the crystals will have to be developed."

Carbon dioxide is polluting Earth's atmosphere and damaging coral reefs and marine life — impacts that are irreversible in our lifetime, Yaghi said.

Co-authors on the study are Christian Doonan and Hiroyasu Furukawa, UCLA postdoctoral scholars in Yaghi's laboratory; Ricardo Ferreira, a UCLA visiting undergraduate; John Towne, a former UCLA undergraduate; Carolyn Knobler, a research associate in Yaghi's laboratory; and Bo Wang, a UCLA postdoctoral scholar in Yaghi's laboratory.

Try 100 times

A few years ago, Yaghi spoke at Shanghai's Fudan University, which is known for having one of the best chemistry departments in China. There, he met Deng, who at the time was an undergraduate student at the university. Deng and his colleagues had tried unsuccessfully to make new MOFs.

"DJ told me, 'Professor, we tried a slight variation to make new MOFs and it did not work,'" Yaghi recalled. "I asked, 'How many times did you try?' He said, 'Two or three times.' I said, 'How about 20 times, 30 times? How about 100 times? If it were that easy, why would it need a smart person like you to do it? Success and excellence do not come that easily.' I said, 'If you really want to learn how to do MOF chemistry, you better come and work with me.' I think that shocked him, but here he is."

How did Deng react to Yaghi's offer?

"Definitely," said Deng, who plans to become a chemistry professor. "And," he added, "the story ends with me trying enough times to get it right. It took me about a hundred more times."

"With MOF chemistry," Yaghi said, "it is not all design; there is a lot of trial and error because we are trying to learn what nature is telling us, and learning that code takes time.

"What is special about DJ and the other students who have worked in my laboratory is that no matter how much you raise the bar, they jump high enough to rise above it," Yaghi said. "It takes a special student to do that, but they are out there, and they need to be inspired. Working with students like DJ that I can challenge in this way is every professor's dream."

####

About UCLA
UCLA is California's largest university, with an enrollment of nearly 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer more than 323 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Five alumni and five faculty have been awarded the Nobel Prize.

For more information, please click here

Contacts:
Media Contacts
Stuart Wolpert
310-206-0511

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Synthetic Biology

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Seattle Hub for Synthetic Biology launched by Allen Institute, Chan Zuckerberg Initiative, and the University of Washington will turn cells into recording devices to unlock secrets of disease: First-of-its-kind research initiative will develop technologies to reveal how changes i December 8th, 2023

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Environment

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Automotive/Transportation

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Industrial

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project