Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Sensors Provide Early Warning of Biological Threats

Early Warning’s analyzer feeds a concentrated water sample to its biosensor, providing rapid pathogen detection.
Early Warning’s analyzer feeds a concentrated water sample to its biosensor, providing rapid pathogen detection.

Abstract:
In order to help detect biological traces on Mars, scientists at Ames Research Center began work on an ultrasensitive biosensor in 2002. Early Warning initially developed a working version of the NASA biosensor calibrated to detect the bacteria strain E. coli O157:H7, known to cause acute gastrointestinal illness. It also detects indicator E. coli, commonly used in water testing. The analyzer uses a biomolecule concentrator—an Early Warning invention—to reduce a 10-liter water sample to 1 milliliter in about 45 minutes. The concentrated sample is then processed and fed to the biosensor. The entire process takes about 2 hours, a drastic improvement over typical laboratory-based water sampling, which can take several days to a week.

Sensors Provide Early Warning of Biological Threats

Troy, New York | Posted on November 9th, 2009

The Centers for Disease Control and Prevention (CDC) estimates there are between 4 and 11 million cases of acute gastrointestinal illnesses in the United States each year—caused by pathogens in public drinking water. The bacteria Escherichia coli (E. coli) and Salmonella have within the past few years contaminated spinach and tomato supplies, leading to nationwide health scares. Elsewhere, waterborne diseases are devastating populations in developing countries like Zimbabwe, where a cholera epidemic erupted in 2008 and claimed over 4,000 lives.

Scientists have found an unexpected source of inspiration in the effort to prevent similar disasters: the search for life on Mars. The possibility of life on the Red Planet has been a subject of popular and scientific fascination since the 19th century. While Martian meteorites have turned up controversial hints of organic activity, and NASA's exploratory efforts have delivered important discoveries related to potential life—the presence of water ice, and plumes of methane in Mars's atmosphere—direct evidence of organisms on our closest planetary relative has yet to be found.

In order to help detect biological traces on Mars, scientists at Ames Research Center began work on an ultrasensitive biosensor in 2002. The chief components of the sensor are carbon nanotubes, which are the major focus of research at the Center for Nanotechnology at Ames—the U.S. Government's largest nanotechnology research group and one of the largest in the world. Tubes of graphite about 1/50,000th the diameter of a human hair, carbon nanotubes can be grown up to several millimeters in length and display remarkable properties. They possess extreme tensile strength (the equivalent of a cable 1 millimeter in diameter supporting nearly 14,000 pounds) and are excellent conductors of heat and electricity.

It is the nanotubes' electrical properties that Ames researchers employed in creating the biosensor. The sensor contains a bioreceptor made of nanotubes tipped with single strands of nucleic acid of waterborne pathogens, such as E. coli and Cryptosporidium. When the probe strand contacts a matching strand from the environment, it binds into a double helix, releasing a faint electrical charge that the nanotube conducts to the sensor's transducer, signaling the presence of the specific pathogens found in the water. Because the sensor contains millions of nanotubes, it is highly sensitive to even minute amounts of its target substance. Tiny, requiring little energy and no laboratory expertise, the sensor is ideal for use in space and, as it turns out, on Earth as well.

Partnership

"Carbon nanotubes are the wonder material of nanotechnology," says Neil Gordon, president of Early Warning Inc., based in Troy, New York. "The opportunity was ripe to put that technology into a product." Gordon encountered the director of the Center for Nanotechnology, Meyya Meyyappan, at a number of industry conferences, and the two discussed the possible terrestrial applications of NASA's biosensor. In 2007, Early Warning exclusively licensed the biosensor from Ames and entered into a Space Act Agreement to support further, joint development of the sensor through 2012.

Product Outcome

Early Warning initially developed a working version of the NASA biosensor calibrated to detect the bacteria strain E. coli O157:H7, known to cause acute gastrointestinal illness. It also detects indicator E. coli, commonly used in water testing. In the process, the company worked out a method for placing multiple sensors on a single wafer, allowing for mass production and cost-effective testing. In April, at the 2009 American Water Works Association "Water Security Congress," Early Warning launched its commercial Biohazard Water Analyzer, which builds upon the licensed NASA biosensor and can be configured to test for a suite of waterborne pathogens including E. coli, Cryptosporidium, Giardia, and other bacteria, viruses, and parasitic protozoa. The analyzer uses a biomolecule concentrator—an Early Warning invention—to reduce a 10-liter water sample to 1 milliliter in about 45 minutes. The concentrated sample is then processed and fed to the biosensor. The entire process takes about 2 hours, a drastic improvement over typical laboratory-based water sampling, which can take several days to a week. The sensor operates in the field via a wired or wireless network and without the need for a laboratory or technicians, allowing for rapid, on-the-fly detection and treatment of potentially dangerous organic contaminants.

"The sensor is incredibly sensitive and specific to the type of pathogen it is calibrated to detect in the water," says Gordon. "Instead of just detecting coliforms in the water that may or may not indicate the presence of pathogens, we will know if there are infectious strains of Salmonella, E. coli, or Giardia that could sicken or even kill vulnerable people if consumed." (Coliform bacteria levels typically indicate water and food sanitation quality.)

The water analyzer has multiple applications, notes Gordon. Early Warning's system can monitor recreational water quality at beaches and lakes, which can be contaminated by animal feces, farming activities, and infectious pathogens in human waste. Agricultural companies may use the analyzer to test feed water for cattle, and food and beverage companies may employ the sensor to ensure the purity of water used in their products. Health care organizations have expressed interest in using the analyzer to test water from showers and other potential sources of pathogens like Legionella, which causes the flu-like Legionnaires' disease.

Early Warning and Kansas State University, in Manhattan, Kansas, are collaborating on sensor enhancements such as improving the safety of imported produce. Since the skins of fruits and vegetables are potential sites of dangerous pathogens, inspectors could collect water sprayed on the produce and, using the analyzer, know within a few hours whether a particular shipment is contaminated. Last year, Kansas State was selected as the home for the U.S. Department of Homeland Security's new National Bio and Agro-Defense Facility, which could also benefit Early Warning.

"We're eager to show how the private sector, government agencies, and academia can work together to evolve this platform into products that benefit our citizens," says Gordon. With an aging U.S. water and wastewater infrastructure, increasingly severe weather systems, global travel and food imports affecting the proliferation of disease-causing organisms, and more than 1 billion people worldwide without access to safe water (according to the World Health Organization), the fruits of this partnership may be more necessary than ever.

####

About NASA Spinoff Magazine
NASA’s Spinoff publication accomplishes several goals. First, it is a convincing justification for the continued expenditure of NASA funds. It serves as a tool to educate the media and the general public by informing them about the benefits and dispelling the myth of wasted taxpayer dollars. It reinforces interest in space exploration. It demonstrates the possibility to apply aerospace technology in different environments. It highlights the ingenuity of American inventors, entrepreneurs, and application engineers, and the willingness of a government agency to assist them. And finally, it continues to ensure global competitiveness and technological leadership by the United States.

About Early Warning

Early Warning is a spin-off from NASA’s Ames Research Center in Silicon Valley. Over 30 employees and contractors are involved in development and testing activities in Silicon Valley, Canada and specialized US labs. Early Warning obtained an exclusive license for commercializing a nanotechnology-based biosensing platform invented by NASA to rapidly identify pathogens in space missions. The Company subsequently produced a more sensitive biosensor along with an on-board concentrator that enables processing of much larger samples than traditional methods and avoids the need for time-consuming polymerase chain reaction (PCR) or other amplification techniques. The Company developed its biosensor internally, with input and participation from engineers at NASA under a 5-year Space Act Agreement for product enhancements. The automated sampling system, concentrator and wireless communications were developed with a $2.3 million grant from Sustainable Development Technology Canada. The Company has engaged leading water organizations in Ontario for validation testing in winter 2009/10 in advance of a full North American roll-out.
Early Warning’s automated inline diagnostic biosensor is the first of its kind to rapidly and automatically detect pathogenic bacteria, viruses and parasites. The biosensor is initially targeted at detecting waterborne pathogens in industrial water testing markets, with food solids, human testing and consumer products to be developed later.

For more information, please click here

Contacts:
Early Warning Inc.
500-407 St. Laurent Blvd
Montreal, QC
H2Y 2Y5
Tel: 514-667-0860
Fax: 514-392-1255

Tel: 888-401-3834 ext.5224 (toll free)

Copyright © NASA Spinoff Magazine

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Products

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

Mode-Changing MEMS Accelerometer from STMicroelectronics Combines High Measurement Resolution and Ultra-Low Power for Industrial Applications November 7th, 2018

Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018

Aculon, Inc. Enters into Strategic Partnership Agreement with Henkel Corporation to Supply Key Mobile Device Manufacturers with NanoProof® PCB Waterproof Technology October 17th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project