Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Deakin researchers make the extra small, extra strong

Abstract:
Being able to swing through the air like Spiderman on strands of ‘spider silk' may be one step—or swing—closer with researchers at Deakin University discovering a way to strengthen plastic nanofibres, ultra-fine fibres much thinner than a human hair, with one of the world's strongest materials, carbon.

Deakin researchers make the extra small, extra strong

Melbourne | Posted on September 14th, 2009

Deakin postdoctoral research fellow Dr Minoo Naebe, whose PhD research resulted in the discovery, said the added strength could open up the plastic, or polymer, nanofibres to new uses.

"Although polymer nanofibres have a certain strength, they have not been strong enough for some potential applications. Our research looked at how carbon nanotubes—tiny graphite tubes which are one of the strongest materials ever discovered—could be used to strengthen polymer nanofibres.

"Polymer nanofibres are created through a process called electrospinning, which uses an electrical charge to draw very fine fibres from a liquid, in this case polymer solution. The idea was that if the polymer could form a shell, or crystallise, around the carbon nanotube, it would strengthen the nanofibre. Electrospinning is a very fast process and at first we thought it may be too rapid for the polymer to crystallise around the carbon nanotubes. But, in what we believe is a world-first, our research showed that crystallisation happens within fast-drawn polymer nanofibres," she said.

Dr Naebe believes the ultra-fine nanofibres have the potential to change our lives.

"I think polymer nanofibre technology, like the internet, will revolutionise the way we live. It has the potential to improve technologies in medicine, energy, security, the environment and more. Tiny, powerful batteries; clothing that protects against chemical and biological hazards; filters to purify air; tissue scaffold implants to help repair injuries—all of these are potential nanofibre applications."

Some of the potential applications Dr Naebe describes seem more exotic than others.

"Who knows, perhaps one day nanofibres strengthened with carbon nanotubes will help real ‘spider' men to soar!"

The Deakin researchers also discovered techniques for achieving additional strength.

"We found that nanofibre strength is increased even further through simple post-manufacture treatments like soaking nanofibres reinforced with carbon nanotubes in alcohol, making the nanofibres 400 per cent stronger than previously possible," Dr Naebe said.

She said the research has been well-received by the scientific community.

"We have received positive feedback from international scientists regarding the light this research sheds on the interaction between the nanotubes and the host polymer and its potential to assist others to develop more effective carbon nanotube composite nanofibres."

####

About Deakin University
Established in the 1970s as one of the new generation of Australian universities, Deakin combines a university's traditional focus on excellent teaching and research with a desire to seek new ways of developing and delivering courses.

Deakin has recently been commended with nine Citations for Outstanding Contributions to Student Learning in the 2007 Carrick Awards (now the Australian Learning and Teaching Council awards).

For more information, please click here

Contacts:
Media contact
Vanessa Barber
Deakin Media Relations
03 5227 1301
0488 292 644

Copyright © Deakin University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Homeland Security

The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023

Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Environment

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Textiles/Clothing

This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles January 27th, 2023

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project