Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Berkeley Scientists Produce First Live Action Movie of Individual Carbon Atoms in Action

This 3D rendering of a graphene hole imaged on TEAM 0.5 shows that the carbon atoms along the edge assume either a zigzag or an armchair configuration. The zigzag is the more stable configuration and shows promise for future spintronic technologies.
This 3D rendering of a graphene hole imaged on TEAM 0.5 shows that the carbon atoms along the edge assume either a zigzag or an armchair configuration. The zigzag is the more stable configuration and shows promise for future spintronic technologies.

Abstract:
Science fiction fans still have another two months of waiting for the new Star Trek movie, but fans of actual science can feast their eyes now on the first movie ever of carbon atoms moving along the edge of a graphene crystal. Given that graphene - single-layered sheets of carbon atoms arranged like chicken wire - may hold the key to the future of the electronics industry, the audience for this new science movie might also reach blockbuster proportions.

Berkeley Scientists Produce First Live Action Movie of Individual Carbon Atoms in Action

Berkeley, CA | Posted on March 26th, 2009

Researchers with the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), working with TEAM 0.5, the world's most powerful transmission electron microscope, have made a movie that shows in real-time carbon atoms repositioning themselves around the edge of a hole that was punched into a graphene sheet. Viewers can observe how chemical bonds break and form as the suddenly volatile atoms are driven to find a stable configuration. This is the first ever live recording of the dynamics of carbon atoms in graphene.

"The atom-by-atom growth or shrinking of crystals is one of the most fundamental problems of solid state physics, but is especially critical for nanoscale systems where the addition or subtraction of even a single atom can have dramatic consequences for mechanical, optical, electronic, thermal and magnetic properties of the material," said physicist Alex Zettl who led this research. "The ability to see individual atoms move around in real time and to see how the atomic configuration evolves and influences system properties is somewhat akin to a biologist being able to watch as cells divide and a higher order structure with complex functionality evolves."

Zettl holds joint appointments with Berkeley Lab's Materials Sciences Division (MSD) and the Physics Department at the University of California (UC) Berkeley, where he is the director of the Center of Integrated Nanomechanical Systems. He is the principal author of a paper describing this work which appears in the March 27, 2009 issue of the journal Science. The paper is entitled, "Graphene at the Edge: Stability and Dynamics." Co-authoring this paper with Zettl were Çağlar Girit, Jannik Meyer, Rolf Erni, Marta Rossell, Christian Kisielowski, Li Yang, Cheol-Hwan Park, Michael Crommie, Marvin Cohen and Steven Louie.

In their paper, the authors credit the unique capabilities of TEAM 0.5 for making their movie possible. TEAM stands for Transmission Electron Aberration-corrected Microscope. The newest instrument at Berkeley Lab's National Center for Electron Microscopy (NCEM) - a DOE national user facility and the country's premier center for electron microscopy and microcharacterization - TEAM 0.5 is capable of producing images with half angstrom resolution, which is less than the diameter of a single hydrogen atom.

Said NCEM director Ulrich Dahmen of this achievement with TEAM 0.5, "The real-time observation of the movements of edge atoms could lead to a new level of understanding and control of nanomaterials. With further advances in electron-optical correctors and detectors it may become possible to increase the sensitivity and speed of such observations, and begin to see a live
view of many other reactions at the atomic scale."

Rubbing graphene off the end of a pencil tip and suspending the specimen in an observation grid, Zettl and his colleagues used prolonged irradiation from TEAM 0.5's electron beam (set at 80 kV) to introduce a hole into the graphene's pristine hexagonal carbon lattice. Focusing the beam to a spot on the sheet blows out the exposed carbon atoms to create the hole. Since atoms at the edge of the hole are continually being ejected from the lattice by electrons from the beam the size of the hole grows. The researchers used the same TEAM 0.5 electron beam to record for analysis a movie showing the growth of the hole and the rearrangement of the carbon atoms.

"Atoms that lose their neighbors become highly volatile, and move around rapidly, continually repositioning themselves from one metastable configuration to the next," said Zettl. "Although configurations come and go, we found a zigzag configuration to be the most stable. It occurs more often and over longer length scales along the edge than the other most common configuration, which we called the armchair."

Understanding which of these atomic configurations is the most stable is one of the keys to predicting and controlling the stability of a device that utilizes graphene edges. The discovery of strong stability in the zigzag configuration is particularly promising news for the spintronic dreams of the computer industry.

Two years ago, co-authors Cohen and Louie, theorists who hold joint appointments with Berkeley Lab's Materials Sciences Division and UC Berkeley, calculated that nanoribbons of graphene can conduct a spin current and could therefore serve as the basis for nanosized spintronic devices. Spin, a quantum mechanical property arising from the magnetic field of a spinning electron, carries a directional value of either "up" or "down" that can be used to encode data in the 0s and 1s of the binary system. Spintronic devices promise to be smaller, faster and far more versatile than today's devices because - among other advantages - data storage does not disappear when the electric current stops.

Said Cohen, "Our calculations showed that zigzag graphene nanoribbons are magnetic and can carry a spin current in the presence of a sufficiently large electric field. By carefully controlling the electric field, it should be possible to generate, manipulate, and detect electron spins and spin currents in spintronics applications."

Said Louie, "If electric fields can be made to produce and manipulate a 100-percent spin-polarized carrier system through a chosen geometric structure, it will revolutionize spintronics technology."

The theorists were enthusiastic about actually being able to see their predictions in action.

Said Cohen, "This work is an excellent example of the power of attacking a fundamental problem through a combination of theory, experiment and cutting edge instrumentation. The instrument is one of the world's best and allows us to see atoms move, the theory allows us to make realistic models, and the experiment was performed through the magic hands of Alex Zettl to ensure that the right measurement was done in the right way."

Said Louie, "As the old saying goes - seeing is believing. The visual verification of the formation and stability of zigzag edges in the live atomic images from TEAM 0.5 is very satisfying. Furthermore, the ability to simultaneously see atomic structure and perform physical measurements, using the kind of set-up that the Zettl group has at NCEM, should greatly accelerate the cycle of discovery, theoretical understanding, applications and further discovery."

For Zettl and his movie-making collaborators, next up they will correlate the atomic dynamics in graphene that they can now observe in real time with such properties as electrical conduction, optical response and magnetism. This will be a major advance towards fully understanding and applying graphene to spintronic technology as well as other electronic and photovoltaic devices.

"While, graphene is particularly exciting, our experimental methods should be applicable to other materials, including other 2-D systems as well," Zettl said. "We are vigorously pursuing these areas of research in collaboration with the theorists and the staff at NCEM."

Said NCEM principal investigator and co-author of this paper, Kisielowski, "The ability to observe the dynamics of single carbon atoms is a dream come true that reaches beyond investigations of graphene. In fact it gets us one step closer to understanding artificial photosynthesis, which is considered to be an ultimate energy technology and is being pursued at Berkeley Lab through the Helios Project."

View the youtube videos:

http://www.youtube.com/v/EogdalfXF4c

http://www.youtube.com/v/nS-3CeuayBk

####

About Lawrence Berkeley National Laboratory
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our website at www.lbl.gov.

For more information, please click here

Contacts:
Mr. Lynn Yarris
Senior science writer/media relations
Lawrence Berkeley National Laboratory
phone: 510-486-5375

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project