Home > Press > Nantero and SVTC Make Carbon-Nanotube Capability Available for Next-Generation Electronics
![]()  | 
Abstract:
Nantero, Inc., a nanotechnology company using carbon nanotubes (CNTs) for the development of next-generation semiconductor devices, has announced collaboration with SVTC Technologies to accelerate the commercialization of nanotube-based electronics products. Nantero has developed a "CMOS-friendly" proprietary CNT process that it will install at SVTC's two state-of-the-art development fabs, in San Jose, Calif., and Austin, Texas.
 CNTs -- cylindrical carbon molecules about a nanometer across and up to a millimeter long -- exhibit extraordinary strength, unique electrical properties and efficient heat conduction. Due to their novel properties, CNTs hold tremendous promise for a variety of semiconductor, nanotechnology and optics applications. By making Nantero's proprietary CNT process available at SVTC's development fabs, the two companies hope to enable potential licensees of Nantero to develop and commercialize the use of CNTs in SVTC's IP-secure environment.
"By placing our CNT process module at SVTC, we are now able to support multiple co-development relationships across a growing array of CMOS-grade CNT devices," said Greg Schmergel, CEO of Nantero. "Our development partners now have the opportunity to develop CNT products with us in a third-party environment utilizing state-of-the-art capabilities that will transfer efficiently to their own production environments."
The companies' collaboration fits well with SVTC's broader mission to enable commercialization of new process and device developments in the semiconductor, MEMS and related nanotechnology domains with support for a direct path between the work completed in SVTC's facilities to high-volume manufacturing. CNTs represent an ideal area for SVTC because, currently, there is a huge gap between the promise of carbon nanotubes as demonstrated in research labs and their translation into commercial products that can be manufactured in high volumes.
Together, Nantero and SVTC can offer CNT device development capabilities for customers targeting a wide range of applications including photovoltaics (solar cells), LEDs, sensors, MEMS and other semiconductor-based devices.
"SVTC is delighted to welcome Nantero as a partner," said Dave Bergeron, SVTC's CEO. "We have seen interest in CNTs coming from a number of companies looking to integrate CNTs with CMOS. Together Nantero and SVTC have the technology and experience to accelerate their efforts." 
####
About Nantero, Inc.
 Nantero is a nanotechnology company using carbon nanotubes for the development of next-generation semiconductor devices. Nantero’s main focus is the development of NRAM™ universal memory. Nantero is also working with licensees on the development of additional applications of Nantero’s core nanotube-based technology. More information on Nantero, Inc., is available in English and Japanese at www.nantero.com.
About SVTC
SVTC Technologies, a leading independent semiconductor development foundry, enables the development and commercialization of innovative semiconductor-based technologies and products in an accelerated, cost-effective and IP-secure way. Since joining forces with ATDF, SVTC now offers an even more powerful suite of leading-edge equipment and services, including full-scale 8-inch and 12-inch process capabilities, advanced CMOS equipment, development support tools and commercialization services. SVTC's San Jose, Calif., facility and ATDF's Austin, Texas, facility deliver operational excellence and faster time to revenue, allowing customers to create real, manufacturing-ready products for rapidly growing markets such as MEMS/MOEMS, photovoltaics, biotech, novel memory and high-voltage applications. More information can be found at www.svtc.com.
For more information, please click here
Contacts:
Martell Communications (for SVTC)
Lisa Figlioli
203-625-0082
or
SGN Public Relations & Marketing (for Nantero)
Suzanne Gibbons-Neff
617-670-1763
Copyright © Business Wire 2008
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Display technology/LEDs/SS Lighting/OLEDs
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
MEMS
Chip Technology
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Programmable electron-induced color router array May 14th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
    Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
    Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
    Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Sensors
    Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
    Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Nanoelectronics
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
    Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
    Reduced power consumption in semiconductor devices September 23rd, 2022
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Energy
    Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
    Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Alliances/Trade associations/Partnerships/Distributorships
    Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
    University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Solar/Photovoltaic
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
    Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
    Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||