Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > EoPlex CEO Arthur L. Chait Will Speak on the Topic of Filling the Gap Between Nano and 'Just Plain Miniature' Devices at the IEEE Meeting February 13t

Abstract:
EoPlex CEO Arthur L. Chait Will Speak on the Topic of Filling the Gap Between Nano and 'Just Plain Miniature' Devices at the IEE

EoPlex CEO Arthur L. Chait Will Speak on the Topic of Filling the Gap Between Nano and 'Just Plain Miniature' Devices at the IEEE Meeting February 13t

REDWOOD CITY, CA | Posted on February 3rd, 2008

Arthur L. Chait will present to the IEEE Components, Packaging and Manufacturing Technology Society of Silicon Valley on Wednesday, February 13th, 6:30 p.m. at the Sunnyvale Ramada Inn.

Mr. Chait will note that a great deal of progress has been made in the field of nano and related "tiny" technologies. Unfortunately, the technology to link the tiny world to the macro world has not kept pace. The space between nano and macro is immense. At the nano end are self-assembling structures and semiconductor processes that deal in angstroms; and at the macro end are conventional machining and assembly techniques. Between these two extremes there is a gap where engineers struggle to make low-cost devices with complex 3-D structures containing multiple materials that are "Just Plain Miniature" (JPM). This talk will discuss the meso-scale, HVPF(TM) technology and describe applications including: cell phone antennas, energy harvesters to replace batteries, thermal management devices and microreactors for use in fuel cells. [A full abstract is located in the Appendix below.]

Dinner tickets are $30.00 each. The presentation-only session at 7:30 p.m. is offered at no cost. The Sunnyvale Ramada Inn is located at 1217 Wildwood Avenue, Freeway 101 frontage road, between Lawrence Expressway and Great America Parkway, Sunnyvale, (800.888.3899). Tickets may be purchased through PayPal. Reserve in advance by email to Janis Karklins,

About CPMT

The IEEE Components, Packaging and Manufacturing Technology (CPMT) Society is the leading international forum for scientists and engineers engaged in the research, design and development of revolutionary advances in microsystems packaging and manufacture. The non-profit Society helps professionals through its journals, conferences and workshops, committee activities, local chapter events, educational programs and awards. For more information, visit http://www.cpmt.org/. CPMT is part of the IEEE (Institute of Electrical and Electronics Engineers), the world's largest professional technology association. This non-profit organization develops, defines and reviews electronics and computer science standards. Standards developed by the IEEE often become international standards. Membership includes deans and provosts of every major engineering university and college throughout the world. Membership also includes engineering managers and corporate and financial executives.

About Arthur L. Chait

Arthur L. Chait joined EoPlex in 2002 and was elected Chairman of the Board in 2003. EoPlex is a Silicon Valley start-up that utilizes new technology to manufacture low-cost ceramic-metal components for miniature energy devices, sensors, fuel cells, pumps, packages and circuits. Mr. Chait has raised two rounds of VC funding and the company is now backed by Draper Fisher Jurvetson, ATA Ventures, Labrador Ventures, and Draper Richards. Prior to EoPlex, Mr. Chait was with Solectron (NYSE) as Senior VP Global Accounts where he had revenue responsibility of over $10 billion/year with customers including: IBM, Cisco, Dell, Apple, Ericsson, SUN, Nortel, Nokia, HP/Compaq, Motorola, and Lucent. Mr. Chait's prior experience also includes: GM Zitel (NASDAQ) where he created the software division; Senior VP at Stanford Research Institute with responsibility for 600 staff and all international offices; Booz Allen & Hamilton where he managed assignments in technology strategy for major OEMs; and Dresser/Halliburton where he was a research director in advanced materials. Mr. Chait holds an MBA from the University of Pittsburgh and a BS in Materials Engineering from Rutgers University and was also awarded the Steinmetz Medal from GE.

####

About EoPlex Technologies, Inc.
EoPlex Technologies, Inc. produces components using innovative deposition techniques based on custom printing equipment and proprietary "inks" that carry ceramic, metallic or polymer materials to millions of locations. This allows the manufacture of components with integrated chambers, channels, sensors, circuits, reactors, energy scavengers and other features. Many parts are created simultaneously in large panels and the only tooling required is low-cost printing masks. As a result, there is great flexibility to change designs quickly, allowing fast time to market and even modifications during full production runs. EoPlex is a privately held company based in Redwood City, CA and is backed by ATA Ventures, Draper Fisher Jurvetson, Labrador Ventures and Draper-Richards. For more information, visit http://www.eoplex.com.

APPENDIX Abstract of Presentation by Arthur Chait for CPMT/SCV, February 13, 2008

A great deal of progress has been made in the field of nano and related "tiny" technologies. Unfortunately, the technology to link the tiny world to the macro world has not kept pace. The space between nano and macro is immense. At the nano end are self-assembling structures and semiconductor processes that deal in angstroms; and at the macro end are conventional machining and assembly techniques. Between these two extremes there is a gap where engineers struggle to make low-cost devices with complex 3-D structures containing multiple materials that are "Just Plain Miniature" (JPM).

This gap is often referred to as meso-scale and in this presentation we will consider a meso-scale of roughly 20 microns to 20 millimeters. A number of manufacturing technologies are used in this range including: thin film, lithography, etching, molding, embossing and micromachining. A very successful example is the application of semiconductor processing to create MEMs devices in silicon. MEMs airbag accelerometers and ink jet printer heads account for annual sales of several billion dollars per year.

However, semiconductor technology is not suitable for many other needs. Large, diverse markets exist for miniature devices that cannot be made with semiconductor technology and which require combinations of materials such as ceramics, metals and even polymers. The processes available to meet these needs are limited, costly and, in some cases, don't even exist. This presentation will review some of the existing technologies and then introduce a new technology call High Volume Print Forming (HVPF(TM)) that is able to fill an important portion of this gap.

HVPF(TM) is an additive manufacturing process that deposits layers in large panels to produce thousands of individual parts. It has some similarities to semiconductor processing, since HVPF can utilize conductors and insulators in the same layer. For example, it can produce a ceramic package with buried passive components and circuit conductors all at the same time. The technology can build temporary elements from fugitive materials to produce channels and open structures after heat processing. It has some similarities to rapid prototyping (RP) in that it builds parts from layers, but unlike RP the process works with conductors, dielectrics, passive components and is an actual manufacturing process not a model making technique like RP.

HVPF(TM) can be utilized with special versions of screen, stencil, offset and litho printing. Other methods like micro-dispensers, tape casting and jet printing can also be used for certain design elements. All of these techniques require proprietary "inks" to produce the ceramic, metal, catalyst or polymer features. These inks must print to high tolerance, bond where required, set quickly during the build and then decompose to the final material such as metals or ceramics. At the same time, the thermal properties of the materials must be adjusted to accommodate shrinkage, thermal expansion and other parameters.

This talk will discuss the technology and describe applications including: cell phone antennas, energy harvesters to replace batteries, thermal management devices and microreactors for use in fuel cells.

For more information, please click here

Contacts:
Janice Odell
+1-707-237-2738

EoPlex Technologies, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Events/Classes

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project