Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticle technique could lead to improved semiconductors

Abstract:
Devices made from plastic semiconductors, like solar cells and light-emitting diodes (LEDs), could be improved based on information gained using a new nanoparticle technique developed at The University of Texas at Austin.

Nanoparticle technique could lead to improved semiconductors

Austin, TX | Posted on August 6th, 2007

As electrical charges travel through plastic semiconductors, they can be trapped much like a marble rolling on a bumpy surface becomes trapped in a deep hole. These traps of charges are known as "deep traps," and they are not well understood.

Deep traps can be desired, as in the case of plastic semiconductors used for memory devices, but they can also decrease the efficiency of the material to conduct electrical charges. In the case of solar cells, deep traps can decrease the efficiency of the conversion of light into electricity.

To further explore the deep trap phenomenon, a group of scientists led by Professors of Chemistry and Biochemistry Paul Barbara and Allen Bard developed a single-particle technique to study small portions of semiconductor material at the nanoscale.

The scientists reported their findings in the advanced online issue of the journal Nature Materials.

"Our results strongly suggest that deep traps are formed in plastic semiconductors by a charge induced chemical reaction," says Dr. Rodrigo Palacios, lead author and post-doctoral fellow at the Center for Nano and Molecular Science and Technology. "These traps were not there in the uncharged pristine material."

Deep traps could be caused by defects in the semiconductor material—either native to the material or introduced impurities—with special properties that encourage charge trapping. The traps also could develop over the life of the semiconductor.

Previous techniques used to study deep traps have generally involved completed semiconductor devices, which Palacios says creates complications due to the complexity of a functional device.

For the current study, Palacios used a conjugated polymer (plastic semiconductor) material known as F8BT, which is commercially available and has promising applications in organic LEDs and solar cells.

He produced particles of F8BT with diameters about one-ten thousandth that of a human hair. He then shone light on the nanoparticles and measured changes in intensity of the resulting fluorescence. (This type of semiconductor material takes in light energy and releases part of this energy as light of a different color.)

Palacios observed deep traps forming as he electrochemically charged and discharged the semiconductor nanoparticles. The deep traps led to decreases in light emission from the material.

"With our new technique, we got detailed information on how these deep traps are formed and how long they live," says Palacios. "In principle, this kind of information can be used to improve devices made out of these conjugated polymers, designing new materials that can avoid these deep traps or materials that might be able to form these deep traps better."

####

About University of Texas at Austin
Founded in 1883, UT is one of the largest and most respected universities in the nation. The Times of London ranked UT second among U.S. public universities in its ranking of the world's top 200 universities.

For more information, please click here

Contacts:
Dr. Rodrigo Palacios

512-471-5535

Copyright © University of Texas at Austin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project