Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tomorrow's Green Nanofactories

Abstract:
New podcast explores how viruses produce eco-friendly batteries

Tomorrow's Green Nanofactories

Washington, DC | Posted on July 9th, 2007

Viruses are notorious villains. They cause serious human diseases like AIDS, polio, and influenza, and can lead to system crashes and data loss in computers.

A new podcast explores how nanotechnology researcher Angela Belcher, from Massachusetts Institute of Technology (MIT), is working with viruses to make them do good things. By exploiting a virus's ability to replicate rapidly and combine with semiconductor and electronic materials, she is coaxing them to grow and self-assemble nanomaterials into a functional electronic device. Through this marriage of nanotechnology with green chemistry, Belcher and her team are working toward building faster, better, cheaper and environmentally-friendly transistors, batteries, solar cells, diagnostic materials for detecting cancer, and semiconductors for use in modern electrical devices-everything from computers to cell phones.

Unlike traditional semiconductor or battery manufacturing which requires expensive and toxic chemicals, Belcher's nanofactories generate little waste, grow at room temperature, and promise to be inexpensive and largely biodegradable.

Does all this sound too good to be true? Judge for yourself. Listen to an interview with Dr. Belcher, a 2004 winner of a MacArthur Foundation "Genius Award." It is second in an exciting new series of podcasts called Trips to the NanoFrontier. These podcasts are available online at http://www.penmedia.org/podcast , or directly from Apple's iTunes music store.

These podcasts and a recent publication, NanoFrontiers: Visions for the Future ( http://www.nanotechproject.org/114 ), are written by freelance science writer Karen F. Schmidt. Both focus on nanotechnology‚s ability to address the energy crisis, the need for better medical treatments, and the demand for clean water. They are based on a two-day NanoFrontiers forecasting workshop held in February 2006, sponsored by the National Science Foundation (NSF), National Institutes of Health (NIH), and the Project on Emerging Nanotechnologies, which is an initiative of the Woodrow Wilson International Center for Scholars and The Pew Charitable Trusts.

"Nanotechnology is the future. In 2006 alone, governments, corporations, and venture capitalists spent $12 billion on nanotechnology research and development worldwide. Nanotechnology promises to change just about everything-our medical care, energy sources, communications and food. It is leading us to what many in government and industry are calling 'The Next Industrial Revolution'‚ Society needs to prepare now for how to exploit and harness its potential, especially to ensure that nanotechnology makes possible a greener, more sustainable tomorrow," said David Rejeski, director of the Project on Emerging Nanotechnologies at the Wilson Center.

"Dr. Belcher's research with viruses, proteins and yeast offers hope for new, ground-breaking solutions to the world's energy problems. It holds out the prospect of using nanotechnology in a variety of ways, ranging from improving the efficiency of production, storage, and transmission of energy to overcoming many of the obstacles to a hydrogen-based transportation system based on fuel-cell powered cars and trucks," according to Rejeski.

####

About The Project on Emerging Nanotechnologies
The Project on Emerging Nanotechnologies is an initiative launched by the Woodrow Wilson International Center for Scholars and The Pew Charitable Trusts in 2005. It is dedicated to helping business, government and the public anticipate and manage possible health and environmental implications of nanotechnology. For more information about the project, log on to http://www.nanotechproject.org .

About Nanotechnology

Nanotechnology entails the measurement, prediction and construction of materials on the scale of atoms and molecules. A nanometer is one-billionth of a meter, and nanotechnology typically deals with particles and structures larger than 1 nanometer, but smaller than 100 nanometers. To put this into perspective, the width of a human hair is approximately 80,000 nanometers. In 2014, Lux Research estimates that $2.6 trillion in manufactured goods will incorporate nanotech, or about 15 percent of total global output.

For more information, please click here

Contacts:
Sharon McCarter
Phone: (202) 691-4016

Copyright © Woodrow Wilson International Center for Scholars

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Automotive/Transportation

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Fuel Cells

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project