Home > Press > Materials scientists learn how to make liquid crystal shape-shift
Researchers also 3D-printed structures made of two layers of LCE with different properties and showed that this gave the material even more degrees of freedom to actuate. Researchers also printed lattice structures with the material, which could be used in medical applications. CREDIT University of California San Diego |
Abstract:
A new 3D-printing method will make it easier to manufacture and control the shape of soft robots, artificial muscles and wearable devices. Researchers at UC San Diego show that by controlling the printing temperature of liquid crystal elastomer, or LCE, they can control the material's degree of stiffness and ability to contract--also known as degree of actuation. What's more, they are able to change the stiffness of different areas in the same material by exposing it to heat.
Researchers 3D-printed structures made of two layers of LCE with different properties and showed that this gave the material even more degrees of freedom to actuate. Researchers also printed lattice structures with the material, which could be used in medical applications.
CREDIT
University of California San Diego
As a proof of concept, the researchers 3D-printed in a single print, with a single ink, structures whose stiffness and actuation varies by orders of magnitude, from zero to 30 percent. For example, one area of the LCE structure can contract like muscles; and another can be flexible, like tendons. The breakthrough was possible because the team studied LCE closely to better understand its material properties.
The team, led by Shengqiang Cai, a professor in the Department of Mechanical and Aerospace Engineering at the UC San Diego Jacobs School of Engineering, details their work in the Sept. 25 issue of Science Advances.
Researchers were inspired to create this material with different degrees of actuation by examples in biology and nature. In addition to the combination of muscle and tendon, researchers took cues from the beak of the squid, which is extremely stiff at the tip but much softer and malleable where it is connected to the mouth of the squid.
"3D-printing is a great tool to make so many different things--and it's even better now that we can print structures that can contract and stiffen as desired under a certain stimuli, in this case, heat," said Zijun Wang, the paper's first author and a Ph.D. student in Cai's research group.
Understanding material properties
To understand how to tune the material properties of LCE, researchers first studied the material very closely. They determined that printed LCE filament is made of a shell and a core. While the shell cools off quickly after printing, becoming stiffer, the core cools more slowly, remaining more malleable.
As a result, researchers were able to determine how to vary several parameters in the printing process, especially temperature, to tune the mechanical properties of LCE. In a nutshell, the higher the printing temperature, the more flexible and malleable the material. While the preparation of the LCE ink takes a few days, the actual 3D print can be done in just 1 to 2 hours, depending on the geometry of the structure being printed.
"Based on the relationship between the properties of LCE filament and printing parameters, it's easy to construct structures with graded material properties," said Cai.
Varying temperature to 3D-printing structures
For example, researchers printed an LCE disk at 40 degrees C (104 F) and heated it up to 90 degrees C (194 F) in hot water. The disk deformed into a conical shape. But an LCE disk composed of areas that are printed at different temperatures (40, then 80 then 120 degrees Celsius, for example), deformed in a completely different shape when heated up.
Researchers also 3D-printed structures made of two layers of LCE with different properties and showed that this gave the material even more degrees of freedom to actuate. Researchers also printed lattice structures with the material, which could be used in medical applications.
Finally, as a proof of concept, the team 3D printed an LCE tube that they had tuned during 3D printing and showed that it could adhere to a rigid glass plate much longer when actuated at high temperatures, about 94 C (201 F), than a regular LCE tube with homogenous properties. This could lead to the manufacture of better robotic feet and grippers.
The actuation of the material could be activated not just in hot water but also by infusing LCE with heat-sensitive particles or particles that absorb light and convert it to heat--anything from black ink powder to graphene. Another mechanism would be to 3D print the structures with electric wires that generate heat embedded in LCE.
Next steps include finding a way to tune the material's properties more precisely and efficiently. Researchers also are working on modifying the ink so the printed structures can be self-repairable, reprogrammable, and recyclable.
####
For more information, please click here
Contacts:
Ioana Patringenaru
619-253-4474
@UCSanDiego
Copyright © University of California, San Diego
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Robotics
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Femtosecond laser technique births "dancing microrobots": USTC's breakthrough in multi-material microfabrication August 11th, 2023
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Light guide plate based on perovskite nanocomposites November 3rd, 2023
3D & 4D printing/Additive-manufacturing
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
3D-printed decoder, AI-enabled image compression could enable higher-res displays December 9th, 2022
Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Self-repairing Materials
Self-driving microrobots December 10th, 2019
Disruptive by Design: Nano Now February 1st, 2019
Fluid-inspired material self-heals before your eyes: Coating for metals rapidly heals over scratches and scrapes to prevent corrosion January 30th, 2019
Manufacturing microspheres: Technique mass-produces uniform, encapsulated particles for pharmaceuticals, many other uses October 6th, 2016
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||