Home > Press > A solid understanding of liquid-solid interaction: Pitt researcher receives $300K from the NSF to explore motion of viscous liquids interacting with solid bodies
G. Paolo Galdi, Distinguished Professor of Mechanical Engineering & Materials Science at the University of Pittsburgh CREDIT University of Pittsburgh |
Abstract:
The same principles that led to the Tacoma Narrows Bridge collapse in 1940 could someday allow doctors to direct microrobots through the bloodstream to deliver medicine precisely where needed.
The interaction between viscous liquid and solid bodies has become a main focus of applied research, and with good reason. G. Paolo Galdi, distinguished professor of mechanical engineering and materials science at the University of Pittsburgh Swanson School of Engineering, is working to harness the potential of this interaction for wide-ranging applications in biomedical engineering, micro- and nano-technological equipment design, and suspension bridge construction. The National Science Foundation (NSF) recently awarded Galdi $299,792 for this work.
Galdi's project investigates two specific aspects within this field. The first explores how a solid object moves when it vibrates in a viscous liquid, especially when the vibration is caused by an oscillating mass inside the object. This work has practical applications in biomedical engineering and designing small-scale equipment.
“A microrobot with a vibrating motor could be used to deliver medicine directly to where it’s needed in the body, as long as the robot’s movement could be precisely controlled,” explained Galdi. “An internal, vibrating motor would be much safer than other means of propelling something within the veins, but the movement from a vibrating motor is much more difficult to predict and control.”
Galdi’s research aims to discover how changing the frequency of vibration relates to the net motion of the robot, and how changing the shape of the robot and the speed of the vibration might direct its path.
The second aspect of Galdi's research examines how the flow of a viscous liquid can affect or even produce the oscillation of an elastic structure. Understanding this phenomenon is crucial for studying the stability of suspension bridges. By investigating these questions, Galdi hopes to contribute to preventing disasters like the Tacoma Narrows Bridge collapse, a suspension bridge that famously collapsed soon after it was built in 1940 because of oscillations caused by wind.
“When wind hits a suspension bridge, it can create oscillations that can provoke movement of the structure and, sometimes, cause it to fail. This failure isn’t as simple as it appears,” explained Galdi. “I’m approaching this problem from a rigorous mathematical perspective so that, hopefully, we can prevent these catastrophes in the future.”
The NSF funding not only recognizes the importance of Galdi's research but also creates opportunities for graduate students. The grant will provide valuable research experience to ECE PhD Candidate Marc Karakouzian. Two undergraduate students—Benjamin Carr and Oscar Gerber—will also contribute to the work.
The three-year project is set to begin on July 1.
####
For more information, please click here
Contacts:
Maggie Lindenberg
University of Pittsburgh
Copyright © University of Pittsburgh
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Robotics
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Femtosecond laser technique births "dancing microrobots": USTC's breakthrough in multi-material microfabrication August 11th, 2023
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||