Home > Press > Wiring the quantum computer of the future: A novel simple build with existing technology: The basic units of a quantum computer can be rearranged in 2D to solve typical design and operation challenges
Constructing a small-scale circuit to further examine and explore the possibility. CREDIT Tokyo University of Science |
Abstract:
Quantum computing is increasingly becoming the focus of scientists in fields such as physics and chemistry, and industrialists in the pharmaceutical, airplane, and automobile industries. Globally, research labs at companies like Google and IBM are spending extensive resources on improving quantum computers, and with good reason. Quantum computers use the fundamentals of quantum mechanics to process significantly greater amounts of information much faster than classical computers. It is expected that when error-corrected and fault-tolerant quantum computation is achieved, scientific and technological advancement will occur at an unprecedented scale.
But, building quantum computers for large-scale computation is proving to be a challenge in terms of their architecture. The basic units of a quantum computer are the "quantum bits" or "qubits." These are typically atoms, ions, photons, subatomic particles such as electrons, or even larger elements that simultaneously exist in multiple states, making it possible to obtain several potential outcomes rapidly for large volumes of data. The theoretical requirement for quantum computers is that these are arranged in two-dimensional (2D) arrays, where each qubit is both coupled with its nearest neighbor and connected to the necessary external control lines and devices. When the number of qubits in an array is increased, it becomes difficult to reach qubits in the interior of the array from the edge. The need to solve this problem has so far resulted in complex three-dimensional (3D) wiring systems across multiple planes in which many wires intersect, making their construction a significant engineering challenge.
A group of scientists from Tokyo University of Science, Japan, RIKEN Centre for Emergent Matter Science, Japan, and University of Technology, Sydney, led by Prof Jaw-Shen Tsai, proposes a unique solution to this qubit accessibility problem by modifying the architecture of the qubit array. "Here, we solve this problem and present a modified superconducting micro-architecture that does not require any 3D external line technology and reverts to a completely planar design," they say. This study has been published in the New Journal of Physics.
The scientists began with a qubit square lattice array and stretched out each column in the 2D plane. They then folded each successive column on top of each other, forming a dual one-dimensional array called a "bi-linear" array. This put all qubits on the edge and simplified the arrangement of the required wiring system. The system is also completely in 2D. In this new architecture, some of the inter-qubit wiring--each qubit is also connected to all adjacent qubits in an array--does overlap, but because these are the only overlaps in the wiring, simple local 3D systems such as airbridges at the point of overlap are enough and the system overall remains in 2D. As you can imagine, this simplifies its construction considerably.
The scientists evaluated the feasibility of this new arrangement through numerical and experimental evaluation in which they tested how much of a signal was retained before and after it passed through an airbridge. Results of both evaluations showed that it is possible to build and run this system using existing technology and without any 3D arrangement.
The scientists' experiments also showed them that their architecture solves several problems that plague the 3D structures: they are difficult to construct, there is crosstalk or signal interference between waves transmitted across two wires, and the fragile quantum states of the qubits can degrade. The novel pseudo-2D design reduces the number of times wires cross each other, thereby reducing the crosstalk and consequently increasing the efficiency of the system.
At a time when large labs worldwide are attempting to find ways to build large-scale fault-tolerant quantum computers, the findings of this exciting new study indicate that such computers can be built using existing 2D integrated circuit technology. "The quantum computer is an information device expected to far exceed the capabilities of modern computers," Prof Tsai states. The research journey in this direction has only begun with this study, and Prof Tsai concludes by saying, "We are planning to construct a small-scale circuit to further examine and explore the possibility."
####
About Tokyo University of Science
Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan's development in science through inculcating the love for science in researchers, technicians, and educators.
With a mission of "Creating science and technology for the harmonious development of nature, human beings, and society", TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today's most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.
About Professor Jaw-Shen Tsai from Tokyo University of Science
Dr Jaw-Shen Tsai is currently a Professor at the Tokyo University of Science, Japan. He began research in Physics in 1975 and continues to hold interest in areas such as superconductivity, the Josephson effect, quantum physics, coherence, qubits, and artificial atoms. He has 160+ research publications to his credit and serves as the lead author in this paper. He has also won several awards, including Japan's Medal of Honor, the Purple Ribbon Award.
For more information, please click here
Contacts:
Tsutomu Shimizu
Lead author
Professor Jaw-Shen Tsai
Department of Physics
Tokyo University of Science
Copyright © Tokyo University of Science
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Automotive/Transportation
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Aerospace/Space
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024
Bridging light and electrons January 12th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||