Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors

The team conducted an experiment in which they observed the material while controlling the number of electrons, leading them to discover changes in the properties of FGT. The team proved that the magnetic anisotropy, which describes how the material's magnetic properties change depending on the direction, contributed to such changes.

CREDIT
Korea Institute of Science and Technology (KIST)
The team conducted an experiment in which they observed the material while controlling the number of electrons, leading them to discover changes in the properties of FGT. The team proved that the magnetic anisotropy, which describes how the material's magnetic properties change depending on the direction, contributed to such changes. CREDIT Korea Institute of Science and Technology (KIST)

Abstract:
Drs. Chaun Jang, Jun Woo Choi, and Hyejin Ryu of the Korea Institute of Science and Technology (KIST, President Lee Byung Gwon) have announced that their team at KIST's Center for Spintronics successfully controlled the magnetic properties of FGT (Fe3GeTe2) in a joint research project with Dr. Se Young Park and his team at the Center for Correlated Electron Systems at the Institute for Basic Science (IBS). Fe3GeTe2 has recently attracted attention as a material for next-generation spintronic semiconductors.

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors

Sejong, Korea | Posted on February 14th, 2020

*Named by combining the terms "spin" and "electronics," "spintronics" is a new field in electronic engineering that aims to replace conventional silicon semiconductors by utilizing electron spin, a quantum property of electrons.

Van der Waals materials, also known as two-dimensional (2D) materials, are layered materials composed of planes that are attached to each other via a weak van der Waals interaction. These include various materials such as graphene and molybdenum disulfide. When combined with other 2D materials, they can create new materials that show previously undiscovered properties. This is why 2D materials, which have a variety of properties, such as superconductivity, semi-conductivity, and metallicity have been the subject of so many studies.

In 2017, 2D van der Waals materials that show magnetic properties were discovered, stimulating research projects and studies all around the world. However, most van der Waals magnetic materials have some constraints in terms of spintronics application because of their low Curie temperature** and high coercivity,*** making them unsuitable for use in certain devices.

** Curie temperature: a transition temperature point where a ferromagnetic material changes to a paramagnetic one or vice versa.

*** Coercivity: the intensity of magnetic field required to reduce the magnetic flux density of a ferromagnetic material to zero after the magnetism of that material has been saturated.

A number of studies have been done on FGT, a recently discovered van der Waals material with a layered structure. The joint KIST-IBS research team discovered an efficient scheme for controlling the properties of FGT. The team conducted an experiment in which they observed the material while controlling the number of electrons, leading them to discover changes in the properties of FGT. The team proved that the magnetic anisotropy,**** which describes how the material's magnetic properties change depending on the direction, contributed to such changes.

**** Magnetic anisotropy: This refers to the directional dependence of a material's magnetic properties on a crystallographic or geometric structure. Depending on such structures, a material can have easy or hard magnetization directions.

The research results revealed the origin of the changes in the FGT magnetic properties, thus presenting a possible method of efficiently controlling the properties of 2D magnetic materials. Furthermore, the research team announced that by potentially controlling the properties of single-atom-thick van der Waals magnetic materials, the development of spintronic devices which operate 100-times faster than current silicon-based electronic device, could be accelerated.

Dr. Hyejin Ryu of KIST said, "We started this study to discover the magnetic properties of van der Waals materials and apply such properties to spintronic devices." She added, "Further development of new materials for semiconductors with various properties will be possible through the use of van der Waals magnetic materials and other van der Waals materials based heterostructures."

###

This major KIST research project was conducted with the support of the Ministry of Science and ICT (Minister Choi Kiyoung) as part of the Creative Convergence Research Project (CAP) for the purpose of laying the foundation for global, cross-border cooperation. This work was also supported by the US DOE-BES (Lawrence Berkeley National Lab), and the Division of Materials Science and Engineering (Brookhaven National Lab). The research results were published in the most recent issue of Nano Letters (IF:12.279, JCR Rank: 5.743%).

####

For more information, please click here

Contacts:
Kim, Do-Hyun

82-295-86344

Copyright © National Research Council of Science & Technology(NST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Laboratories

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Spintronics

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project