Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Copper-based nanomaterials can kill cancer cells in mice

Nanoparticles attack a tumour cell. © Shutterstock
Nanoparticles attack a tumour cell. © Shutterstock

Abstract:
An interdisciplinary team of scientists from KU Leuven, the University of Bremen, the Leibniz Institute of Materials Engineering, and the University of Ioannina has succeeded in killing tumour cells in mice using nano-sized copper compounds together with immunotherapy. After the therapy, the cancer did not return.

Copper-based nanomaterials can kill cancer cells in mice

Leuven, Belgium | Posted on January 10th, 2020

Recent advances in cancer therapy use one's own immunity to fight the cancer. However, in some cases, immunotherapy has proven unsuccessful. The team of biomedical researchers, physicists, and chemical engineers found that tumours are sensitive to copper oxide nanoparticles- a compound composed of copper and oxygen. Once inside a living organism, these nanoparticles dissolve and become toxic. By creating the nanoparticles using iron oxide, the researchers were able to control this process to eliminate cancer cells, while healthy cells were not affected.

"Any material that you create at a nanoscale has slightly different characteristics than its normal-sized counterpart," explain Professor Stefaan Soenen and Dr Bella B. Manshian from the Department of Imaging and Pathology, who worked together on the study. "If we would ingest metal oxides in large quantities, they can be dangerous, but at a nanoscale and at controlled, safe, concentrations, they can actually be beneficial."

As the researchers expected, the cancer returned after treating with only the nanoparticles. Therefore, they combined the nanoparticles with immunotherapy. "We noticed that the copper compounds not only could kill the tumour cells directly, they also could assist those cells in the immune system that fight foreign substances, like tumours," says Dr Manshian.

The combination of the nanoparticles and immunotherapy made the tumours disappear entirely and, as a result, works as a vaccine for lung and colon cancer - the two types that were investigated in the study. To confirm their finding, the researchers injected tumour cells back into the mice. These cells were immediately eliminated by the immune system, which was on the lookout for any new, similar, cells invading the body.

The authors state that the novel technique can be used for about sixty per cent of all cancers, given that the cancer cells stem from a mutation in the p53 gene. Examples include lung, breast, ovarian, and colon cancer.

A crucial element is that the tumours disappeared without the use of chemotherapy, which typically comes with major side-effects. Chemotherapeutic drugs not only attack cancer cells, they often damage healthy cells along the way. For example, some of these drugs wipe out white blood cells, abolishing the immune system.

"As far as I'm aware, this is the first time that metal oxides are used to efficiently fight cancer cells with long-lasting immune effects in live models," Professor Soenen says. "As a next step, we want to create other metal nanoparticles, and identify which particles affect which types of cancer. This should result in a comprehensive database."

The team also plans to test tumour cells derived from cancer patient tissue. If the results remain the same, Professor Soenen plans to set up a clinical trial. For that to happen, however, there are still some hurdles along the way. He explains: "Nanomedicine is on the rise in the USA and Asia, but Europe is lagging behind. It's a challenge to advance in this field, because doctors and engineers often speak a different language. We need more interdisciplinary collaboration, so that we can understand each other better and build upon each other's knowledge."

####

For more information, please click here

Contacts:
Stefaan Soenen

32-492-208-679

@LeuvenU

Copyright © KU Leuven

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The full text of the study "Model-Based Nanoengineered Pharmacokinetics of Iron-Doped Copper Oxide Applicable to Nanomedicine" by Hendrik Naatz, Bella B. Manshian, Carla Rios Luci, Vasiliki Tsikourkitoudi, Yiannis Deligiannakis, Johannes Birkenstock, Suman Pokhrel, Lutz Mädler, and Stefaan J. Soenen was published in Angewandte Chemie:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cancer

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project