Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The Force of Sound: CEA-Leti Manipulates Cells & Bacteria Samples Using Non-contact Evanescent Acoustic Tweezers: Evanescent Acoustic Beam Moves Suspended Particles at Lower Cost & Energy Consumption Than Existing Propagative Surface Acoustic Wave (SAW) Systems

Abstract:
CEA-Leti has developed a new acousto-microfluidic technology for manipulating micro- and nanoscale samples using evanescent sound waves.

The Force of Sound: CEA-Leti Manipulates Cells & Bacteria Samples Using Non-contact Evanescent Acoustic Tweezers: Evanescent Acoustic Beam Moves Suspended Particles at Lower Cost & Energy Consumption Than Existing Propagative Surface Acoustic Wave (SAW) Systems

Grenoble, France | Posted on September 6th, 2019

Described in a paper published in the September issue of Nature (Comm. Phys), the technique is envisioned to replace existing technology, which uses high-frequency propagative surface acoustic waves (leaky SAW) to move microscopic samples on complex substrates. CEA-Leti’s innovative technique generates an evanescent Bessel beam in the low-frequency ultrasound (kHz range). Thanks to the enhanced radiation force arising from the evanescent field, this beam makes it possible to pattern living organisms as small as bacteria along concentric circles on a simple substrate. The paper is entitled “Near-field acoustic manipulation in a confined evanescent Bessel beam”.



“The novelty of our approach is the ability to do exactly the same thing that people did in the propagative SAW domain using high frequency,” said CEA-Leti scientist Cédric Poulain. “In that sense, we followed the same route as in optics, where conventional (propagative) optical tweezers were replaced by the improved evanescent optical versions (using plasmon nano-optical tweezers). Here, in acoustics, the use of a very thin substrate in the low-frequency range favors the emission of evanescent sound waves.’’



Evanescent waves are localized waves in the vicinity of the emitting substrate with a very small wavelength gradient – and therefore a high level of force. To achieve such forces, conventional techniques (mainly SAW) require ultrasound waves in the MHz range, which are difficult to generate.



Furthermore, in existing propagative wave technology, waves radiate into the fluid and thus decay very quickly as they propagate along the substrate. Because the radiation of these waves wastes energy, researchers commonly refer to them as “leaky waves”. Evanescent waves do not radiate, and consequently do not decay as they propagate along the substrate.



The new technology offers several advantages over existing systems for contact-less manipulation of fluids and living cells:



An easy-to-produce and low-cost solution that does not require cleanrooms.
The low-frequency emission warrants both lower power consumption and an easier implementation than usual RF frequencies required for conventional SAW.
The confinement of the energy in the vicinity of the emitter allows lower volume of the required sample, which is a key feature for biological applications.


“Our device is simply made of a commercially available but very thin glass plate that is attached to a ring-shaped piezo ceramic facing a cover that confines the liquid,” Poulain said. “We also showed that we can confine the beam within the evanescent length, which in turn increases the radiation force for some well-defined and resonant gaps.”



The CEA-Leti paper also reports another application in microfluidics that takes advantage of microbubbles. Microbubbles are widely used in conjunction with ultrasound for medical applications such as echography, drug delivery etc., referred to as contrast agents.



“One of the advantages of the low-frequency excitation is that microbubbles are sensitive to this frequency domain: they pulsate and radiate sound, a bit like a little waterproof loudspeaker,” Poulain explained. “As we showed, a microbubble trapped on the axis of the evanescent beam can be used to either capture or repel surrounding particles when the sound is turned on: The bubble behaves as an acoustic magnet.



“Other possible applications for the bubbles include purifying liquids like water by capturing suspended particles and microorganisms, but that is another story!” he said.

In terms of applications, CEA-Leti’s team also showed that its Bessel beam could be used to extract the plasma from a patient’s blood, a procedure that CEA-Leti has patented.



The Acoustic Radiation Force



This week, the same team, along with two colleagues from Grenoble Alpes University, will also publish a theoretical paper that explains how the acoustic radiation force operates. In this short letter, the authors demonstrate the similarity between the structures of the radiation forces felt by a particle immersed in a sound field and an object falling in a gravity field.



This viewpoint brings a new, clearer physical interpretation of the radiation force and its capability to sort, trap, or separate particles in a fluid according to their size, density or compressibility.



That work, described in the paper, “A Lagrangian formulation for a gravitational analogue of the acoustic radiation force”, appeared on Sept. 5 in EPL (Euro Physical Letters).

####

About CEA Leti
Leti, a technology research institute at CEA Tech, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. CEA-Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, CEA-Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 2,700 patents, 91,500 sq. ft. of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. CEA-Leti has launched 60 startups and is a member of the Carnot Institutes network. This year, the institute celebrates its 50th anniversary. Follow us on www.leti-cea.com and @CEA_Leti.

CEA Tech is the technology research branch of the French Alternative Energies and Atomic Energy Commission (CEA), a key player in innovative R&D, defence & security, nuclear energy, technological research for industry and fundamental science, identified by Thomson Reuters as the second most innovative research organization in the world. CEA Tech leverages a unique innovation-driven culture and unrivalled expertise to develop and disseminate new technologies for industry, helping to create high-end products and provide a competitive edge.

For more information, please click here

Contacts:
Press Contact

Agency

+33 6 74 93 23 47

Copyright © CEA Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project