Home > Press > Sheaths drive powerful new artificial muscles
This illustration shows a twisted carbon nanotube yarn (CNT) (left) and a sheath-run artificial muscle (SRAM) made by coating a twisted CNT yarn with a polymer sheath. A scanning electron microscope image of a 42-micron outer-diameter coiled SRAM is shown on the right. CREDIT The University of Texas at Dallas |
Abstract:
Over the last 15 years, researchers at The University of Texas at Dallas and their international colleagues have invented several types of strong, powerful artificial muscles using materials ranging from high-tech carbon nanotubes (CNTs) to ordinary fishing line.
The research group's previous muscles were made by twisting CNT yarn, polymer fishing line or nylon sewing thread. By twisting these fibers to the point that they coil, the researchers produced muscles that dramatically contract, or actuate, along their length when heated and return to their initial length when cooled.
To form the new muscles, the research team applied a polymer coating to twisted CNT yarns, as well as to inexpensive nylon, silk and bamboo yarns, creating a sheath around the yarn core.
"In our new muscles, it is the sheath around a coiled or twisted yarn that drives actuation and provides much higher work-per-cycle and power densities than for our previous muscles," said Dr. Ray Baughman, corresponding author of the study, the Robert A. Welch Distinguished Chair in Chemistry and director of the Alan G. MacDiarmid NanoTech Institute at UT Dallas.
In their experiments, a key step to making the finished muscles was to twist the newly coated yarns until they coil, while the sheath material was still wet.
"If you insert twisting or coiling after the sheath has dried, the sheath will crack," Baughman said. "Optimizing the thickness of the sheath is also very important. If it is too thick, the twisted yarn at the core won't be able to untwist because the sheath is holding it in place. If it is too thin, the untwisting of the yarn will cause the sheath to crack."
Dr. Jiuke Mu, lead author of the study and a research scientist with the NanoTech Institute, first developed the concept of the sheath-run artificial muscle. In the sheath-run configuration, the outside sheath absorbs energy and drives the actuation of the muscle.
"In our previous twisted and coiled muscles, we applied thermal energy to the entire muscle, but only the outer, twisted part of the fiber was doing any mechanical work - the central part was doing little," Mu said. "Using the sheath, the input energy can be converted into the mechanical energy of the muscle more quickly and efficiently.
"Why consume energy by heating the whole yarn, when all you need is to heat the outer part of the yarn for it to actuate?" Mu said. "With our new muscles, we only have to put energy into the sheath."
Baughman said many materials could be used for the sheath, as long as they have strength and can undergo dimensional change under various ambient variables, such as changes in temperature or moisture.
When operated electrochemically, a muscle consisting of a CNT sheath and a nylon core generated an average contractile power that is 40 times that of human muscle and 9 times that of the highest power alternative electrochemical muscle.
"In our previous work, we showed that yarns made from carbon nanotubes make wonderful artificial muscles. Such yarns are lightweight, yet are stronger and more powerful than human muscles of the same length and weight," Baughman said.
"But carbon nanotube yarn is very expensive, so in this new work, we're going in a different direction," he said. "We found that while we can use carbon nanotubes as the core material for sheath-run artificial muscles, we don't have to. We demonstrated that CNT yarns can be replaced by inexpensive, commercially available yarns."
He added that the polymer coating process could easily be scaled up for commercial production.
"Since the SRAM technology enables the replacement of CNT yarns with cheaper yarns, these muscles are very attractive for intelligent structures, such as robotics and comfort-adjusting clothing," Baughman said.
To demonstrate possible consumer applications of sheath-run artificial muscles, the researchers knitted SRAMs into a textile that increased porosity when exposed to moisture. They also demonstrated an SRAM made from polymer-coated nylon thread that linearly contracts when exposed to increasing glucose concentration. This muscle might be used to squeeze a pouch to release medication to counteract high blood sugar.
###
The inventors have applied for a provisional U.S. patent on the technology.
In addition to Baughman and Mu, UT Dallas NanoTech Institute researchers involved in the work include Dr. Monica Jung de Andrade, research scientist; Dr. Shaoli Fang, associate research professor; and Dr. Shi Hyeong Kim, postdoctoral researcher. Also participating were Hyun Kim, bioengineering doctoral student; Dr. Taylor Ware, assistant professor of bioengineering; and Dr. Dong Qian and Dr. Hongbing Lu, professors of mechanical engineering.
Study authors also include researchers from Georgia Southern University; the University of Wollongong in Australia; Donghua University and Wuhan University in China; Hanyang University in South Korea; and the bioscience company MilliporeSigma.
The research was funded by several sources: Air Force Office of Scientific Research, Office of Naval Research, National Science Foundation, Robert A. Welch Foundation, Australian Research Council, National Research Foundation of Korea, and the Science and Technology Commission of Shanghai Municipality.
####
For more information, please click here
Contacts:
Amanda Siegfried
972-883-4335
Copyright © University of Texas at Dallas
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Robotics
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Femtosecond laser technique births "dancing microrobots": USTC's breakthrough in multi-material microfabrication August 11th, 2023
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Patents/IP/Tech Transfer/Licensing
Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||