Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power

Physicist Zhifeng Ren, center, director of the Texas Center for Superconductivity at the University of Houston, led a project to resolve the problem of asymmetrical thermoelectric performance.

CREDIT
University of Houston
Physicist Zhifeng Ren, center, director of the Texas Center for Superconductivity at the University of Houston, led a project to resolve the problem of asymmetrical thermoelectric performance. CREDIT University of Houston

Abstract:
The promise of thermoelectric materials as a source of clean energy has driven the search for materials that can efficiently produce substantial amounts of power from waste heat.

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power

Houston, TX | Posted on June 21st, 2019

Researchers reported a major step forward Friday, publishing in Science Advances the discovery of a new explanation for asymmetrical thermoelectric performance, the phenomenon that occurs when a material that is highly efficient in a form which carries a positive charge is far less efficient in the form which carries a negative charge, or vice versa.

Zhifeng Ren, M. D. Anderson Chair Professor of Physics at the University of Houston, director of the Texas Center for Superconductivity at UH and corresponding author on the paper, said they have developed a model to explain the previously unaddressed disparity in performance between the two types of formulations. They then applied the model to predict promising new materials to generate power using waste heat from power plants and other sources.

The researchers already knew thermoelectric efficiency depends on the performance of the material in both forms, known as "p-type" and "n-type" for carrying a positive and negative charge, respectively. But most materials either don't exist in both formulations or one type is more efficient than the other.

Promising New Material Synthesized

It is possible to build effective thermoelectric devices using just a p-type or n-type compound, but it is easier to design a device that contains both types; Ren said the best performance would come when both types exhibit similar properties.

The researchers synthesized one of the predicted materials, a zirconium-cobalt-bismuth compound, and reported a measured heat-to-electricity conversion efficiency of 10.6% at both the cold side, about 303 Kelvin, or about 86 degrees Fahrenheit, and the hot side, about 983 Kelvin (1,310 Fahrenheit) for both the p-type and the n-type.

Jun Mao, a post-doctoral researcher at UH and a first author of the report, said they determined the asymmetrical performance of some materials is linked to the fact that the charge moves at different rates in the two types of formulation. "If the charge movement of both the positive charge, for p-type, and the negative charge, for n-type, is similar, the thermoelectric performance of both types is similar," he said.

Knowing that, they were able to use the mobility ratio to predict performance of previously unstudied formulations.

"When the thermoelectric performance for one type of a material has been experimentally studied, while the other type has not yet been investigated, it is possible to predict the ZT by using the identified relationship between the asymmetry and weighted mobility ratio," the researchers wrote. ZT, or the figure of merit, is a metric used to determine how efficiently a thermoelectric material converts heat to electricity.

New Model Predicts Highly Efficient Materials

Hangtian Zhu, a post-doctoral researcher at UH and the report's other first author, said the next step is determining how to formulate the corresponding type of material, once a material with a high efficiency in either p-type or n-type is found.

That can require experimentation to determine the best dopant - researchers tweak performance by adding a tiny amount of an additional element to the compound, known as "doping" - to improve performance, Zhu said.

That's where the new understanding of asymmetrical performance comes in. Zhu said by predicting which compounds will have high performance in both types, researchers are encouraged to continue looking for the best combination, even if early efforts did not succeed.

###

Other researchers involved in the project are: Qing Zhu and Zihang Liu, both of UH; Yumei Wang of the Beijing National Laboratory for Condensed Matter Physics; and Zhenzhen Feng, Jifeng Sun and David J. Singh of the University of Missouri.

####

For more information, please click here

Contacts:
Jeannie Kever

713-743-0778

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Superconductivity

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project