Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material

Scientists at Rice and Northwestern universities have developed a technique to get images of two-dimensional borophene and match them with models. Polymorphic borophene shows promise for electronic, thermal, optical and other applications. The researchers also created a phase diagram, at right, with details about borophene polymorphs observed to date. (Credit: Xiaolong Liu/Northwestern University)
Scientists at Rice and Northwestern universities have developed a technique to get images of two-dimensional borophene and match them with models. Polymorphic borophene shows promise for electronic, thermal, optical and other applications. The researchers also created a phase diagram, at right, with details about borophene polymorphs observed to date. (Credit: Xiaolong Liu/Northwestern University)

Abstract:
Graphene can come from graphite. But borophene? There's no such thing as borite.

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material

Houston, TX | Posted on April 11th, 2019

Unlike its carbon cousin, two-dimensional borophene can't be reduced from a larger natural form. Bulk boron is usually only found in combination with other elements, and is certainly not layered, so borophene has to be made from the atoms up. Even then, the borophene you get may not be what you need.

For that reason, researchers at Rice and Northwestern universities have developed a method to view 2D borophene crystals, which can have many lattice configurations -- called polymorphs -- that in turn determine their characteristics.

Knowing how to achieve specific polymorphs could help manufacturers incorporate borophene with desirable electronic, thermal, optical and other physical properties into products.

Boris Yakobson, a materials physicist at Rice's Brown School of Engineering, and materials scientist Mark Hersam of Northwestern led a team that not only discovered how to see the nanoscale structures of borophene lattices but also built theoretical models that helped characterize the crystalline forms.

Their results are published in Nature Communications.

Borophene remains hard to make in even small quantities. If and when it can be scaled up, manufacturers will likely want to fine-tune it for applications. What the Rice and Northwestern teams learned will help in that regard.

Graphene takes a single form – an array of hexagons, like chicken wire – but perfect borophene is a grid of triangles. However, borophene is a polymorph, a material that can have more than one crystal structure. Vacancies that leave patterns of "hollow hexagons" in a borophene lattice determine its physical and electrical properties.

Yakobson said there could theoretically be more than 1,000 forms of borophene, each with unique characteristics.

"It has many possible patterns and networks of atoms being connected in the lattice," he said.

The project started at Hersam's Northwestern lab, where researchers modified the blunt tip of an atomic force microscope with a sharp tip of carbon and oxygen atoms. That gave them the ability to scan a flake of borophene to sense electrons that correspond to covalent bonds between boron atoms. They used a similarly modified scanning tunneling microscope to find hollow hexagons where a boron atom had gone missing.

Scanning flakes grown on silver substrates under various temperatures via molecular-beam epitaxy showed them a range of crystal structures, as the changing growth conditions altered the lattice.

“Modern microscopy is very sophisticated, but the result is, unfortunately, that the image you get is generally difficult to interpret," Yakobson said. "That is, it's hard to say an image corresponds to a particular atomic lattice. It's far from obvious, but that's where theory and simulations come in."

Yakobson's team used first-principle simulations to determine why borophene took on particular structures based on calculating the interacting energies of both boron and substrate atoms. Their models matched many of the borophene images produced at Northwestern.

"We learned from the simulations that the degree of charge transfer from the metal substrate into borophene is important," he said. "How much of this is happening, from nothing to a lot, can make a difference."

The researchers confirmed through their analysis that borophene is also not an epitaxial film. In other words, the atomic arrangement of the substrate doesn't dictate the arrangement or rotational angle of borophene.

The team produced a phase diagram that lays out how borophene is likely to form under certain temperatures and on a variety of substrates, and noted their microscopy advances will be valuable for finding the atomic structures of emerging 2D materials.

Looking to the future, Hersam said, "The development of methods to characterize and control the atomic structure of borophene is an important step toward realizing the many proposed applications of this material, which range from flexible electronics to emerging topics in quantum information sciences."

Xiaolong Liu of Northwestern and Luqing Wang of Rice are lead authors of the paper. Co-authors are Shaowei Li and Matthew Rahn of Northwestern. Yakobson is the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry at Rice. Hersam is the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern.

The Office of Naval Research, the National Science Foundation, the Department of Energy Office of Science and the Northwestern University International Institute for Nanotechnology supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the paper at:

Gold soaks up boron, spits out borophene:

Yakobson Research Group:

Hersam Research Group:

George R. Brown School of Engineering:

Related News Press

Flexible Electronics

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

2 Dimensional Materials

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Graphene/ Graphite

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Optical computing/Photonic computing

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Quantum nanoscience

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project