Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Let's not make big waves: A team of researchers generates ultra-short spin waves in an astoundingly simple material

An ultrashort spin wave (red) running through a nickel iron layer. Towards the center of the layer, the magnetic direction (blue arrows) swings only up and down in a sort of knot, while the motion in the other parts remains circular -- with opposing sense of magnetic rotation.

CREDIT
HZDR / Juniks
An ultrashort spin wave (red) running through a nickel iron layer. Towards the center of the layer, the magnetic direction (blue arrows) swings only up and down in a sort of knot, while the motion in the other parts remains circular -- with opposing sense of magnetic rotation. CREDIT HZDR / Juniks

Abstract:
Due to its potential to make computers faster and smartphones more efficient, spintronics is considered a promising concept for the future of electronics. In a collaboration including the Max Planck Institute for Intelligent Systems (MPI-IS) and the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a team of researchers has now successfully generated so-called spin waves much more easily and efficiently than was previously deemed possible. The researchers are presenting their results in the journal Physical Review Letters (DOI: 10.1103/PhysRevLett.122.117202).

Let's not make big waves: A team of researchers generates ultra-short spin waves in an astoundingly simple material

Dresden, Germany | Posted on March 29th, 2019

Modern computer chips are based on transporting electric charges: Each processing event causes an electron current to flow in an electronic component. These electrons encounter resistance, which generates undesired heat. The smaller the structures on a chip, the more difficult it is to dissipate the heat. This charge-based architecture is also partially the reason why the processors' clock rates have not seen any significant increases in years. The nice, steady development curve of chip performance and speed is now flattening. "Existing concepts are reaching their limits," explains Dr. Sebastian Wintz from the Institute of Ion Beam Physics and Materials Research at HZDR. "This is why we are working on a new strategy, the spin waves."

This approach no longer involves transporting charges, but only transfers the electrons' intrinsic angular momentum (,spin') in a magnetic material. The electrons themselves remain stationary, while only their spins change. Since the spins of neighboring electrons sense each other, a change in one spin can travel to its neighbors. The result is a magnetic signal running through the material like a wave - a spin wave. The advantage of spin-powered components is that they would generate very little heat, which means they might use significantly less energy - and this is of great interest for mobile devices such as smartphones. It may also be possible to further miniaturize components for certain applications because spin waves have far shorter wavelengths than comparable electromagnetic signals, for instance in mobile communication. This means we could fit more circuits onto a chip than we can today.

Stirring a spin wave with a magnet vortex

Before we can do all this, we first need a lot more fundamental research. For instance, we need to know how to efficiently generate spin waves. Experts have been trying to work this out for a while now, attaching micrometer-sized metal strips onto thin magnetic layers. An alternating current running through this strip creates a magnetic field that is limited to a very small space. This field will then excite a spin wave in the magnetic layer. But this method has one disadvantage: It is difficult to make the wavelength of the generated spin waves smaller than the width of the metal strip - which is unfavorable for the development of highly integrated components with nanometer-sized structures.

Yet there is an alternative: A magnetic material shaped into circular disks evokes the formation of magnetic vortices whose cores measure no more than about ten nanometers. A magnetic field can then make this vortex core oscillate, which triggers a spin wave in the layer. "Some time ago, we needed relatively complex multi-layered materials to make this happen," Wintz reports. "Now we have managed to send out spin waves from vortex cores in a very simple material." They use an easy-to-manufacture nickel iron alloy layer of about 100 nanometers in thickness.

Unexpectedly short wavelengths

What's remarkable is the wavelength of the generated spin waves - a mere 80 nanometers. "The expert community was surprised we did this in such a simple material," says Dr. Georg Dieterle, who explored the phenomenon in his PhD thesis at MPI-IS. "We also didn't expect to be able to generate such short waves at frequencies in the lower gigahertz range." Experts think that the reason for the short wavelengths resides in the way they travel. Close to the cross-sectional center of the nickel iron layer, the spin wave forms a sort of "knot", inside of which the magnetic direction oscillates only up and down rather than along its usually circular trajectory.

To make these phenomena visible, the team used a special x-ray microscope at the electron storage ring BESSY II at the Helmholtz Zentrum Berlin. "This is the only place on earth that offers the necessary space and time resolutions in this combination," emphasizes Prof. Gisela Schütz, director at MPI-IS. "Without this microscope, we would not have been able to observe these effects." Now the experts are hoping that their results will help further the development of spintronics. "Our vortex cores could, for instance, serve as a local, well controllable source to explore the underlying phenomena and develop new concepts with spin-wave-based components," Dieterle projects. "The spin waves we observed could be of future relevance to highly integrated circuits."

####

About Helmholtz-Zentrum Dresden-Rossendorf
The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) performs - as an independent German research center - research in the fields of energy, health, and matter. We focus on answering the following questions:

* How can energy and resources be utilized in an efficient, safe, and sustainable way?

* How can malignant tumors be more precisely visualized, characterized, and more effectively treated?

* How do matter and materials behave under the influence of strong fields and in smallest dimensions?

To help answer these research questions, HZDR operates large-scale facilities, which are also used by visiting researchers: the Ion Beam Center, the High-Magnetic Field Laboratory Dresden, and the ELBE Center for High-Power Radiation Sources. HZDR is a member of the Helmholtz Association and has five sites (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld near Hamburg) with almost 1,200 members of staff, of whom about 500 are scientists, including 150 Ph.D. candidates.

For more information, please click here

Contacts:
Simon Schmitt

49-351-260-3400

More information:

Dr. Sebastian Wintz
Institute of Ion Beam Physics and Materials Research at the HZDR / Paul Scherrer Institut, Switzerland
Phone: +49 351 260-3221 | Mail:

Prof. Gisela Schütz
Director, Max Planck Institute for Intelligent Systems
Phone: +49 711 689-1950 | Mail:

Copyright © Helmholtz-Zentrum Dresden-Rossendorf

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project