Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Lightweight metal foams become bone hard and explosion proof after being nanocoated

Taking inspiration from bones: Materials scientists Stefan Diebels (l.) and Anne Jung can customize their lightweight and strong metal foams for a wide range of applications.

CREDIT
Credit: Oliver Dietze
Taking inspiration from bones: Materials scientists Stefan Diebels (l.) and Anne Jung can customize their lightweight and strong metal foams for a wide range of applications. CREDIT Credit: Oliver Dietze

Abstract:
Strong enough not only for use in impact protection systems in cars, but able to absorb the shock waves produced by a detonation. Those are just some of the properties shown by the metallic foams developed by materials scientists Stefan Diebels and Anne Jung at Saarland University. Their super lightweight and extremely strong metal foams can be customized for a wide range of applications. The inspiration for the new foam system came from nature: bones. Using a patented coating process, the Saarbrücken team is able to manufacture highly stable, porous metallic foams that can be used, for example, in lightweight construction projects. The initial lattice substrate is either an aluminium or polymer foam, not dissimilar to a kitchen sponge. The research team and the start-up company that their work has spawned (Mac Panther Materials GmbH, Bremen, Germany) will be at Hannover Messe where they will be showcasing their process from the 1st to the 5th of April at the Saarland Research and Innovation Stand (Hall 2, Stand B46).

Lightweight metal foams become bone hard and explosion proof after being nanocoated

Hannover, Germany | Posted on March 14th, 2019

Bones are one of nature's many ingenious developments. They are strong and stable and can cope with loads almost as well as steel. But despite their strength, they are light enough to be easily moved by humans and animals. The secret lies in the combination of a hard exterior shell that encases a porous lattice-like network of bone tissue in the interior of the bone. This structure saves on material and reduces weight. Metal foams are able to mimic these naturally occurring bone structures. The synthetic foams are porous, open-cell structures that are manufactured from metals and that have the appearance of a sponge. The metal foams currently available are certainly lightweight, but the production process is both complicated and expensive. And the stability of the sponge-like foam structure is still too weak and not resilient enough for many applications. This is certainly true of aluminium foam, which is the most common type produced today. 'This is the reason why metal foams have so far not had any real market impact,' explains materials scientist Stefan Diebels, Professor of Applied Mechanics at Saarland University.

His research team has found a way to significantly strengthen the lattice structure of the metal foams, producing a lightweight, extremely stable and versatile material. Diebels and materials scientist Dr. Anne Jung have developed a patented procedure for coating the individual struts that make up the open-cell interior lattice. As a result, the exterior of the foam is stronger and more stable and the structure is now able to withstand extreme loads. However, the treated foam remains amazingly light. The team started out using aluminium foams but are now using inexpensive polyurethane foams whose strength comes entirely from the thin metal coating applied to the lattice structure. 'The resulting metal foams have a low density, a large surface area but a small volume. In relation to their weight, these foams are extremely strong and rigid,' says Stefan Diebels. In fact, they are so strong that they are being used as mobile barriers to provide protection from the shock waves caused by explosions. Even when exposed to underwater detonations, the foams simply 'swallow' the resulting sound and pressure waves, thus protecting sensitive marine organisms from the effects of these powerful shock waves.

'Most of the applications we focus on are generally less spectacular, such as the use of our foams in lightweight construction,' explains Dr. Anne Jung, a senior research scientist in Diebels' group. Dr. Jung actually completed two doctoral theses. She was awarded the German Thesis Award from the Körber Foundation for 'the most important dissertation of the year with significant relevance for society' for her first doctoral theses on the subject of metal foams. Many products can be made lighter and more stable by drawing inspiration from nature's design ingenuity. For example, load-bearing structures in cars and aeroplanes could be manufactured from the metal foam. 'They can be installed as reinforcing struts in the bodywork, while also providing impact protection. The struts can take up large amounts of energy and are able to absorb the force of a collision when parts of the porous core fracture under impact,' explains Anne Jung. There are numerous areas of application for these foams, such as in catalysis, as the material is porous and thus allows liquids and gases to flow through it, or for shock absorption or as a heat shield, as the foams exhibit excellent heat resistance. The foam material can also be used for electromagnetic screening or in architectural applications, where it finds use as sound-absorbing cladding or as a building design element.

The coating is applied in an electroplating bath. The most challenging aspect of the electroplating process was achieving a uniform coating of the ultrathin layer throughout the entire interior of the foam structure. 'The problem', explains Anne Jung, 'is that the metallic foam acts as a Faraday cage.' As the interior of the foam is surrounded by electrically conducting material, electric current and thus the coating is diverted to the exterior of the foam body and does not travel through the interior of the foam - it's similar to what happens when lightning strikes a car. The breakthrough came when Anne Jung decided to use a special anode cage, which allows her to apply a uniform, nanocrystalline coating throughout the entire lattice network. 'The patented method also functions on the industrial scale with foams with very large surface areas,' adds Jung.

The Saarbrücken team has authored numerous important scientific papers in the field and is now regarded as one of the world's leading research groups in the micromechanical characterization of these porous metal lattices. Using an array of experiments, simulations, tension and compression testing, optical microscopy and x-ray computed tomography, the research team have examined the structure, pore geometry and curvature of the struts and have shown how varying the thickness of the nanocoating can impart different properties to the foam materials. By varying the composition of the coating, its thickness or the pore size, the team is able to customize foams to meet different application needs. For example, nanocoating the open-cell lattice structure with nickel produces particularly strong foams, with copper the foam material exhibits high thermal conductivity, with silver they have good antibacterial properties, and with gold the foam is highly decorative. The Saarbrücken research group, which includes students and doctoral researchers, are continuing to work on optimizing both the production process and the material itself.

Background

In order to facilitate the commercial and industrial application of their research results, the Saarbrücken researchers have entered into a technology transfer pilot project together with Saarland University's Knowledge and Technology Transfer Office (KWT) and the external start-up partners Dr. Andreas Kleine and Michael Kleine, and have established the company Mac Panther Materials GmbH with headquarters in Bremen. Both Dr. Jung and Professor Diebels have a stake in the new company as does Saarland University's knowledge and technology transfer company WuT.

####

For more information, please click here

Contacts:
Stefan Diebels

49-068-130-22887

PD Dr.-Ing. Dr. rer. nat. Anne Jung:
Tel.: +49 (0)681 302-3958, -2169, Email:

Dr. Andreas Kleine
(Mac Panther Materials GmbH
Tel.: +49 (0) 421-5 57 16-6

Copyright © Saarland University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

This press release is available in German at:

For more information visit:

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Automotive/Transportation

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Events/Classes

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Construction

Temperature-sensing building material changes color to save energy January 27th, 2023

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project