Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices

Boston College researcher Kun Jiang, PhD, and Professor of Physics Ziqiang Wang. The theoretical physicists have been studying novel quantum electronic states resulting from the interplay of electron-electron interaction, geometrical frustration, and topological band structures.

CREDIT
Lee Pellegrini/Boston College
Boston College researcher Kun Jiang, PhD, and Professor of Physics Ziqiang Wang. The theoretical physicists have been studying novel quantum electronic states resulting from the interplay of electron-electron interaction, geometrical frustration, and topological band structures. CREDIT Lee Pellegrini/Boston College

Abstract:
Like so many targets of scientific inquiry, the class of material referred to as the kagome magnet has proven to be a source of both frustration and amazement. Further revealing the quantum properties of the kagome magnet is seen as one of the primary challenges in fundamental physics - to both theorists and experimentalists.

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices

Chestnut Hill, MA | Posted on December 9th, 2018

An unusual underlying geometry of the atomic arrangement is central to the value of these materials. Kagome lattices are described as intersecting webs of "corner-sharing triangles" and are prized for the unique behavior of the traversing electrons, fertile ground for the study of quantum electronic states described as frustrated, correlated and topological.

A recent study by an international group of researchers, published in the journal Nature, found the kagome ferromagnet Fe3Sn2 exhibits an electronic state that couples unusually strongly to an applied magnetic field that can be rotated to point in any direction of a 3-dimensional space, revealing in quantum scale a "giant" magnetization-driven electronic energy shift taking place within the material.

That energy shift sheds new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices, where magnetic and electronic structures are entangled and produce unusual - often previously unknown - spin-orbit activity, said Boston College Professor of Physics Ziqiang Wang, a co-author of the report, titled "Giant and anisotropic spin-orbit tunability in a strongly correlated kagome magnet."

"We found out two things. The first one is that the electronic state of Fe3Sn2 is nematic, a state that spontaneously breaks the rotation symmetry. The electrons behave as a liquid crystal inside this magnet, presumably due to the strong electron-electron interaction," said Wang. "The second thing we found is you can manipulate and make big changes to the electron energy structure through tuning the magnetic structure by applying a magnetic field."

Wang, a theoretical physicist, and graduate student Kun Jiang, PhD, who have been studying novel quantum electronic states resulting from the interplay of electron-electron interaction, geometrical frustration, and topological band structures, joined experimentalist colleagues who first noted the unusual electronic activity as they studied the material using scanning tunneling microscopy.

The team - which included researchers from BC, Princeton University, Chinese Academy of Sciences, Renmin University, and Peking University - used STM and vector-magnetic-field tools to identify the spin-orbit coupled electronic properties of the kagome ferromagnet and explored the exotic phenomena within it, while performing modeling and calculations to provide theoretical interpretation and understanding of the observed phenomena.

"What our colleagues found is that by changing the direction of the magnetic field, they saw changes in the electronic states that are anomalously large," said Wang. "The shifts of the bands - there are band gaps, forbidden regions in quantum mechanics where electrons cannot reside - those regions can be tuned enormously by the applied magnetic field."

The "band shift" is a change in electronic band structure, said Wang. It expands and narrows the band gap depending on the magnetic field directions. The kagome ferromagnet showed a shift approximately 150 times larger than ordinary materials.

Probing the interference patterns of the electron's quantum mechanical wave functions revealed consistent spontaneous nematicity -- an indication of important electron correlation that causes the rotation symmetry-breaking of the electronic state in the material.

These spin-driven giant electronic responses indicated the possibility of an underlying correlated magnetic topological phase, the researchers reported. The tunability of the kagome magnet revealed a strong interplay between an externally applied magnetic field and nematicity, providing new ways of controlling spin-orbit properties and exploring emergent phenomena in topological or quantum materials, the team wrote.

The giant magnetic field tunability of the electrical properties may one day lead to potential applications in electronic devices such as memory and information storage and sensing technologies, said Wang.

"What's exciting in these results is the potential of realizing something useful," said Wang. "This is coming from very fundamental physics, but it may one day connect to applications. We don't understand everything, but we now know this is a material that contains all these important ingredients."

####

For more information, please click here

Contacts:
Ed Hayward

617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism/Magnons

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Memory Technology

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project