Home > Press > A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices
![]() |
Boston College researcher Kun Jiang, PhD, and Professor of Physics Ziqiang Wang. The theoretical physicists have been studying novel quantum electronic states resulting from the interplay of electron-electron interaction, geometrical frustration, and topological band structures. CREDIT Lee Pellegrini/Boston College |
Abstract:
Like so many targets of scientific inquiry, the class of material referred to as the kagome magnet has proven to be a source of both frustration and amazement. Further revealing the quantum properties of the kagome magnet is seen as one of the primary challenges in fundamental physics - to both theorists and experimentalists.
An unusual underlying geometry of the atomic arrangement is central to the value of these materials. Kagome lattices are described as intersecting webs of "corner-sharing triangles" and are prized for the unique behavior of the traversing electrons, fertile ground for the study of quantum electronic states described as frustrated, correlated and topological.
A recent study by an international group of researchers, published in the journal Nature, found the kagome ferromagnet Fe3Sn2 exhibits an electronic state that couples unusually strongly to an applied magnetic field that can be rotated to point in any direction of a 3-dimensional space, revealing in quantum scale a "giant" magnetization-driven electronic energy shift taking place within the material.
That energy shift sheds new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices, where magnetic and electronic structures are entangled and produce unusual - often previously unknown - spin-orbit activity, said Boston College Professor of Physics Ziqiang Wang, a co-author of the report, titled "Giant and anisotropic spin-orbit tunability in a strongly correlated kagome magnet."
"We found out two things. The first one is that the electronic state of Fe3Sn2 is nematic, a state that spontaneously breaks the rotation symmetry. The electrons behave as a liquid crystal inside this magnet, presumably due to the strong electron-electron interaction," said Wang. "The second thing we found is you can manipulate and make big changes to the electron energy structure through tuning the magnetic structure by applying a magnetic field."
Wang, a theoretical physicist, and graduate student Kun Jiang, PhD, who have been studying novel quantum electronic states resulting from the interplay of electron-electron interaction, geometrical frustration, and topological band structures, joined experimentalist colleagues who first noted the unusual electronic activity as they studied the material using scanning tunneling microscopy.
The team - which included researchers from BC, Princeton University, Chinese Academy of Sciences, Renmin University, and Peking University - used STM and vector-magnetic-field tools to identify the spin-orbit coupled electronic properties of the kagome ferromagnet and explored the exotic phenomena within it, while performing modeling and calculations to provide theoretical interpretation and understanding of the observed phenomena.
"What our colleagues found is that by changing the direction of the magnetic field, they saw changes in the electronic states that are anomalously large," said Wang. "The shifts of the bands - there are band gaps, forbidden regions in quantum mechanics where electrons cannot reside - those regions can be tuned enormously by the applied magnetic field."
The "band shift" is a change in electronic band structure, said Wang. It expands and narrows the band gap depending on the magnetic field directions. The kagome ferromagnet showed a shift approximately 150 times larger than ordinary materials.
Probing the interference patterns of the electron's quantum mechanical wave functions revealed consistent spontaneous nematicity -- an indication of important electron correlation that causes the rotation symmetry-breaking of the electronic state in the material.
These spin-driven giant electronic responses indicated the possibility of an underlying correlated magnetic topological phase, the researchers reported. The tunability of the kagome magnet revealed a strong interplay between an externally applied magnetic field and nematicity, providing new ways of controlling spin-orbit properties and exploring emergent phenomena in topological or quantum materials, the team wrote.
The giant magnetic field tunability of the electrical properties may one day lead to potential applications in electronic devices such as memory and information storage and sensing technologies, said Wang.
"What's exciting in these results is the potential of realizing something useful," said Wang. "This is coming from very fundamental physics, but it may one day connect to applications. We don't understand everything, but we now know this is a material that contains all these important ingredients."
####
For more information, please click here
Contacts:
Ed Hayward
617-552-4826
Copyright © Boston College
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Quantum Physics
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Magnetism/Magnons
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Discoveries
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Announcements
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |