Home > Press > Study unlocks full potential of 'supermaterial' graphene: Researchers remove silicon contamination from graphene to double its performance
![]() |
Drs. Esrafilzadeh and Jalili working on 3D-printed graphene mesh in the lab. CREDIT RMIT University |
Abstract:
New research reveals why the "supermaterial" graphene has not transformed electronics as promised, and shows how to double its performance and finally harness its extraordinary potential.
Graphene is the strongest material ever tested. It's also flexible, transparent and conducts heat and electricity 10 times better than copper.
After graphene research won the Nobel Prize for Physics in 2010 it was hailed as a transformative material for flexible electronics, more powerful computer chips and solar panels, water filters and bio-sensors. But performance has been mixed and industry adoption slow.
Now a study published in Nature Communications identifies silicon contamination as the root cause of disappointing results and details how to produce higher performing, pure graphene.
The RMIT University team led by Dr Dorna Esrafilzadeh and Dr Rouhollah Ali Jalili inspected commercially-available graphene samples, atom by atom, with a state-of-art scanning transition electron microscope.
"We found high levels of silicon contamination in commercially available graphene, with massive impacts on the material's performance," Esrafilzadeh said.
Testing showed that silicon present in natural graphite, the raw material used to make graphene, was not being fully removed when processed.
"We believe this contamination is at the heart of many seemingly inconsistent reports on the properties of graphene and perhaps many other atomically thin two-dimensional (2D) materials ," Esrafilzadeh said.
"Graphene was billed as being transformative, but has so far failed to make a significant commercial impact, as have some similar 2D nanomaterials. Now we know why it has not been performing as promised, and what needs to be done to harness its full potential."
The testing not only identified these impurities but also demonstrated the major influence they have on performance, with contaminated material performing up to 50% worse when tested as electrodes.
"This level of inconsistency may have stymied the emergence of major industry applications for graphene-based systems. But it's also preventing the development of regulatory frameworks governing the implementation of such layered nanomaterials, which are destined to become the backbone of next-generation devices," she said.
The two-dimensional property of graphene sheeting, which is only one atom thick, makes it ideal for electricity storage and new sensor technologies that rely on high surface area.
This study reveals how that 2D property is also graphene's Achilles' heel, by making it so vulnerable to surface contamination, and underscores how important high purity graphite is for the production of more pure graphene.
Using pure graphene, researchers demonstrated how the material performed extraordinarily well when used to build a supercapacitator, a kind of super battery.
When tested, the device's capacity to hold electrical charge was massive. In fact, it was the biggest capacity so far recorded for graphene and within sight of the material's predicted theoretical capacity.
In collaboration with RMIT's Centre for Advanced Materials and Industrial Chemistry, the team then used pure graphene to build a versatile humidity sensor with the highest sensitivity and the lowest limit of detection ever reported.
These findings constitute a vital milestone for the complete understanding of atomically thin two-dimensional materials and their successful integration within high performance commercial devices.
"We hope this research will help to unlock the exciting potential of these materials."
####
For more information, please click here
Contacts:
Michael Quin
61-499-515-417
Copyright © Rmit University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Flexible Electronics
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Water
Taking salt out of the water equation October 7th, 2022
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |