Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene controls surface magnetism at room temperature

Abstract:
Typically research has focused on the effects induced by different materials in graphene. Convinced that this is only half the story, Dr Zeila Zanolli turned the tables to look at the proximity effects of graphene on magnetic semiconducting substrates. Using first principles calculations she observes a switching of internal spin alignment from antiferromagnetic to ferromagnetic. Persisting close to room temperature, her findings could find applications in magnetic memories or spin filters.

Graphene controls surface magnetism at room temperature

Barcelona, Spain | Posted on October 8th, 2018

More information or direct interview with the researcher can be organised upon request. Best.
Story: In a refreshing change of perspective, theoretical physicist Dr Zeila Zanolli has looked at the proximity effects of graphene on a magnetic semiconducting substrate, finding it to affect the substrate’s magnetism down to several layers below the surface. Her paper was published on 5 October in Physical Review B. She was also one of three recipients of the first MaX Prize for frontier research in computational materials science.

Interface physics is the study of the interactions that take place at the junction of two or more materials when brought into contact. Interfaces have always existed, but it is only with advances in the observation and manipulation of matter at the nanoscale that it has become possible to explore the unique phenomena they are home to. Since the advent of graphene, the attention of the research community has been focused on how other materials can be used to imprint new properties onto this intoxicatingly versatile material. In the belief that this is only half the story, Dr Zeila Zanolli of the ICN2 Theory and Simulation Group led by Prof. Pablo Ordejón has instead looked at the effects graphene has on the substrate.

Published in Physical Review B, her latest work shows how, when some oxide materials are brought into contact with graphene, reactions at the interface can lead their magnetic state to become altered. Investigating further, Dr Zanolli also observed these effects to be present several atomic layers below the interface itself.

Specifically, the graphene induces a magnetic softening in the oxide substrate, switching its internal spin alignment from antiferromagnetic to ferromagnetic. This state should persist close to room temperature, leading to applications in magnetic memories or spin filters.

The research was conducted using two flagship codes from the MaX European Center of Excellence: the SIESTA package co-created by Prof. Pablo Ordejón and selected by the Journal of Physics as one of the most important breakthroughs published in its pages, and FLEUR developed at Forschungszentrum Jülich. It was also awarded one of the first MaX Prizes for flagship code applications, announced earlier this year at the MaX International Conference (ICTP Trieste). The MaX European Center of Excellence works at the frontiers of high performance computing (HPC) technologies to enable the best use and evolution of HPC for materials research and innovation.

Article reference:

Z. Zanolli, C. Niu, G. Bihlmayer, Y. Mokrousov, P. Mavropoulos, M.J. Verstraete, S. Blügel. Hybrid quantum anomalous Hall effect at graphene-oxide interfaces. Physical Review B. 00, 005400 (2018) DOI: 10.1103/PhysRevB.00.005400

####

For more information, please click here

Contacts:
Rachel Spencer

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Magnetism/Magnons

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Graphene/ Graphite

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Possible Futures

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Spintronics

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Chip Technology

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Discoveries

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Materials/Metamaterials/Magnetoresistance

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project