Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Design approach developed for important new catalysts for energy conversion and storage: New method could aid in design of pharmaceuticals and optical and data storage materials

Abstract:
Northwestern University researchers have discovered a new approach for creating important new catalysts to aid in clean energy conversion and storage. The design method also has the potential to impact the discovery of new optical and data storage materials, catalysts that impact pharmaceutical synthesis and catalysts that allow for higher efficiency processing of petroleum products at much lower cost.

Design approach developed for important new catalysts for energy conversion and storage: New method could aid in design of pharmaceuticals and optical and data storage materials

Evanston, IL | Posted on March 21st, 2018

Scientists are continually seeking new materials to catalyze (accelerate) the chemical reactions and processes required to create a broad range of products. Identifying and creating a catalyst is complex, especially as the potential number of materials, defined by composition and particle size and shape, is overwhelming.

In this study, researchers looked at the challenges of improving affordability and catalyst efficiency in the conversion and storage of clean energy. Currently, platinum-based (Pt) catalysts are the most effective and commonly used to facilitate a hydrogen evolution reaction (HER), which is, in part, the basis for how fuel cells are used to generate energy. However, as platinum is rare and costly, scientists have been seeking more affordable and efficient alternatives.

“We combined theory, a powerful new tool for synthesizing nanoparticles and more than one metallic element — in this case, an alloy consisting of platinum, copper and gold — to create a catalyst that is seven times more active than state-of-the-art commercial platinum,” said Chad A. Mirkin, the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and the director of the International Institute for Nanotechnology at Northwestern.

The study, published online this week by the Proceedings of the National Academy of Sciences (PNAS), was co-authored by Mirkin; Chris Wolverton, the Jerome B. Cohen Professor of Materials Science and Engineering in Northwestern’s McCormick School of Engineering; and Yijin Kang, an electrochemist and visiting professor from the University of Electronic Science and Technology in China.

Specifically, researchers utilized scanning probe block copolymer lithography (SPBCL), along with density-functional theory (DFT) codes, to design and synthesize the HER catalyst. Invented in Mirkin’s lab at Northwestern, SPBCL enables scientists to control the growth and composition of individual nanoparticles patterned on a surface. The DFT codes outline the structural, magnetic and electronic properties of molecules, materials and defects.

“In addition to providing a new way to catalyze the HER reaction, the paper highlights a novel approach for making and discovering new particle catalysts for almost any industrially important process,” Wolverton said.

This may include providing a clear path to new high-temperature superconductors; structures useful in data storage; materials for solar energy conversion nanostructures to move light around at the tiniest of scales; and new catalysts for converting low-value (affordable) chemicals into high-value products, such as pharmaceuticals and pharmaceutical precursors.

Identifying new materials is essential for driving technological development. The global catalysis market is expected to reach $34.3 billion in the next six years, according to a report by Grand View Research, Inc.

“To find best-in-class materials that drive any application of interest, we need to identify ways to reduce the number of possibilities that will be studied and increase the rate at which they can be explored,” Kang said.

“This combination of theory and nanoscale particle synthesis begins to take on that challenge,” said Mirkin, who also is a professor at McCormick.

The study is titled “Catalyst design by scanning probe block copolymer lithography.”

Lilang Huang and Peng-Cheng Chen are first authors of the study.

####

For more information, please click here

Contacts:
Megan Fellman
847-491-3115


Source contact:
Chad Mirkin
847-491-2907

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Superconductivity

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Memory Technology

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project