Home > Press > Design approach developed for important new catalysts for energy conversion and storage: New method could aid in design of pharmaceuticals and optical and data storage materials
Abstract:
Northwestern University researchers have discovered a new approach for creating important new catalysts to aid in clean energy conversion and storage. The design method also has the potential to impact the discovery of new optical and data storage materials, catalysts that impact pharmaceutical synthesis and catalysts that allow for higher efficiency processing of petroleum products at much lower cost.
Scientists are continually seeking new materials to catalyze (accelerate) the chemical reactions and processes required to create a broad range of products. Identifying and creating a catalyst is complex, especially as the potential number of materials, defined by composition and particle size and shape, is overwhelming.
In this study, researchers looked at the challenges of improving affordability and catalyst efficiency in the conversion and storage of clean energy. Currently, platinum-based (Pt) catalysts are the most effective and commonly used to facilitate a hydrogen evolution reaction (HER), which is, in part, the basis for how fuel cells are used to generate energy. However, as platinum is rare and costly, scientists have been seeking more affordable and efficient alternatives.
“We combined theory, a powerful new tool for synthesizing nanoparticles and more than one metallic element — in this case, an alloy consisting of platinum, copper and gold — to create a catalyst that is seven times more active than state-of-the-art commercial platinum,” said Chad A. Mirkin, the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and the director of the International Institute for Nanotechnology at Northwestern.
The study, published online this week by the Proceedings of the National Academy of Sciences (PNAS), was co-authored by Mirkin; Chris Wolverton, the Jerome B. Cohen Professor of Materials Science and Engineering in Northwestern’s McCormick School of Engineering; and Yijin Kang, an electrochemist and visiting professor from the University of Electronic Science and Technology in China.
Specifically, researchers utilized scanning probe block copolymer lithography (SPBCL), along with density-functional theory (DFT) codes, to design and synthesize the HER catalyst. Invented in Mirkin’s lab at Northwestern, SPBCL enables scientists to control the growth and composition of individual nanoparticles patterned on a surface. The DFT codes outline the structural, magnetic and electronic properties of molecules, materials and defects.
“In addition to providing a new way to catalyze the HER reaction, the paper highlights a novel approach for making and discovering new particle catalysts for almost any industrially important process,” Wolverton said.
This may include providing a clear path to new high-temperature superconductors; structures useful in data storage; materials for solar energy conversion nanostructures to move light around at the tiniest of scales; and new catalysts for converting low-value (affordable) chemicals into high-value products, such as pharmaceuticals and pharmaceutical precursors.
Identifying new materials is essential for driving technological development. The global catalysis market is expected to reach $34.3 billion in the next six years, according to a report by Grand View Research, Inc.
“To find best-in-class materials that drive any application of interest, we need to identify ways to reduce the number of possibilities that will be studied and increase the rate at which they can be explored,” Kang said.
“This combination of theory and nanoscale particle synthesis begins to take on that challenge,” said Mirkin, who also is a professor at McCormick.
The study is titled “Catalyst design by scanning probe block copolymer lithography.”
Lilang Huang and Peng-Cheng Chen are first authors of the study.
####
For more information, please click here
Contacts:
Megan Fellman
847-491-3115
Source contact:
Chad Mirkin
847-491-2907
Copyright © Northwestern University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Superconductivity
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Optical computing/Photonic computing
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||